Graph-Based Android Malware Detection and Categorization through BERT Transformer

被引:4
作者
Simoni, Marco [1 ,2 ]
Saracino, Andrea [3 ]
机构
[1] Univ Roma La Sapienza, Pisa, Italy
[2] CNR, Pisa, Italy
[3] CNR, Ist Informat & Telemat, Pisa, Italy
来源
18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023 | 2023年
基金
欧盟地平线“2020”;
关键词
Cybersecurity; Malware; Android; BERT Transformer; API Call Graph;
D O I
10.1145/3600160.3605057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel approach to Android malware analysis and categorization that leverages the power of BERT (Bidi-rectional Encoder Representations from Transformers) to classify API call sequences generated from Android API Call Graph. By utilizing the API Call Graph, our approach captures the intricate re-lationships and dependencies between API calls, enabling a deeper understanding of the behavior exhibited by Android malware. Our results show that our approach achieves high accuracy in classi-fying API call sequences as malicious or benign and the method provides a promising solution also for categorizing Android mal-ware and can help mitigate the risks posed by malicious Android applications.
引用
收藏
页数:14
相关论文
共 50 条
[11]   Android malware detection via an app similarity graph [J].
Frenklach, Tatiana ;
Cohen, Dvir ;
Shabtai, Asaf ;
Puzis, Rami .
COMPUTERS & SECURITY, 2021, 109
[12]   IoT-Based Android Malware Detection Using Graph Neural Network With Adversarial Defense [J].
Yumlembam, Rahul ;
Issac, Biju ;
Jacob, Seibu Mary ;
Yang, Longzhi .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) :8432-8444
[13]   DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling [J].
Cai, Haipeng ;
Meng, Na ;
Ryder, Barbara ;
Yao, Daphne .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (06) :1455-1470
[14]   Android application classification and anomaly detection with graph-based permission patterns [J].
Sokolova, Karina ;
Perez, Charles ;
Lemercier, Marc .
DECISION SUPPORT SYSTEMS, 2017, 93 :62-76
[15]   An Android Malware Detection Method Based on Metapath Aggregated Graph Neural Network [J].
Li, Qingru ;
Zhang, Yufei ;
Wang, Fangwei ;
Wang, Changguang .
ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT III, 2024, 14489 :344-357
[16]   Using Capsule Networks for Android Malware Detection Through Orientation-Based Features [J].
Khan, Sohail ;
Nauman, Mohammad ;
Alsaif, Suleiman Ali ;
Syed, Toqeer Ali ;
Eleraky, Hassan Ahmad .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03) :5345-5362
[17]   Category Based Malware Detection for Android [J].
Grampurohit, Vijayendra ;
Kumar, Vijay ;
Rawat, Sanjay ;
Rawat, Shatrunjay .
SECURITY IN COMPUTING AND COMMUNICATIONS, 2014, 467 :239-249
[18]   Linear SVM-Based Android Malware Detection [J].
Ham, Hyo-Sik ;
Kim, Hwan-Hee ;
Kim, Myung-Sup ;
Choi, Mi-Jung .
FRONTIER AND INNOVATION IN FUTURE COMPUTING AND COMMUNICATIONS, 2014, 301 :575-585
[19]   String-based Malware Detection for Android Environments [J].
Martin, Alejandro ;
Menendez, Hector D. ;
Camacho, David .
INTELLIGENT DISTRIBUTED COMPUTING X, 2017, 678 :99-108
[20]   Android malware detection method based on bytecode image [J].
Yuxin Ding ;
Xiao Zhang ;
Jieke Hu ;
Wenting Xu .
Journal of Ambient Intelligence and Humanized Computing, 2023, 14 :6401-6410