Data-driven moving horizon state estimation of nonlinear processes using Koopman operator

被引:4
|
作者
Yin, Xunyuan [1 ]
Qin, Yan [2 ]
Liu, Jinfeng [3 ]
Huang, Biao [3 ]
机构
[1] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, 62 Nanyang Dr, Singapore 637459, Singapore
[2] Singapore Univ Technol & Dev, Engn & Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[3] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
关键词
Data-driven state estimation; Nonlinear process; Koopman identification; Moving horizon estimation; MODEL-PREDICTIVE CONTROL; SYSTEMS; DECOMPOSITION;
D O I
10.1016/j.cherd.2023.10.033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, a data-driven constrained state estimation method is proposed for nonlinear processes. Within the Koopman operator framework, we propose a data-driven model identification procedure for state estimation based on the algorithm of extended dynamic mode decomposition, which seeks an optimal approximation of the Koopman operator for a nonlinear process in a higher-dimensional space that correlates with the original process state-space via a prescribed nonlinear coordinate transformation. By implementing the proposed procedure, a linear state-space model can be established based on historic process data to describe the dynamics of a nonlinear process and the nonlinear dependence of the sensor measurements on process states. Based on the identified Koopman operator, a linear moving horizon estimation (MHE) algorithm that explicitly addresses constraints on the original process states is formulated to efficiently estimate the states in the higher-dimensional space. The states of the treated nonlinear process are recovered based on the state estimates provided by the MHE estimator designed in the higher-dimensional space. Two process examples are utilized to demonstrate the effectiveness and superiority of the proposed framework.
引用
收藏
页码:481 / 492
页数:12
相关论文
共 50 条
  • [1] Data-driven parallel Koopman subsystem modeling and distributed moving horizon state estimation for large-scale nonlinear processes
    Li, Xiaojie
    Bo, Song
    Zhang, Xuewen
    Qin, Yan
    Yin, Xunyuan
    AICHE JOURNAL, 2024, 70 (03)
  • [2] Data-driven Estimation for a Region of Attraction for Transient Stability Using the Koopman Operator
    Zheng, Le
    Liu, Xin
    Xu, Yanhui
    Hu, Wei
    Liu, Chongru
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (04): : 1405 - 1413
  • [3] Data-Driven Dynamic State Estimation Framework Using a Koopman Operator-Based Linear Predictor
    Yang, Deyou
    Gao, Han
    Chen, Zhe
    Lv, Yanling
    Wang, Lixin
    IEEE ACCESS, 2025, 13 : 31660 - 31670
  • [4] Data-Driven Models for Control Engineering Applications Using the Koopman Operator
    Junker, Annika
    Timmermann, Julia
    Traechtler, Ansgar
    2022 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, AIRC, 2022, : 1 - 9
  • [5] DATA-DRIVEN CONTROL OF THE CHEMOSTAT USING THE KOOPMAN OPERATOR THEORY
    Dekhici, Benaissa
    Benyahia, Boumediene
    Cherki, Brahim
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2023, 85 (02): : 137 - 150
  • [6] Data-driven spectral analysis of the Koopman operator
    Korda, Milan
    Putinar, Mihai
    Mezic, Igor
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 599 - 629
  • [7] A Nonlinear Predictive Control Approach for Urban Drainage Networks Using Data-Driven Models and Moving Horizon Estimation
    Balla, Krisztian Mark
    Schou, Christian
    Bendtsen, Jan Dimon
    Ocampo-Martinez, Carlos
    Kallesoe, Carsten Skovmose
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (05) : 2147 - 2162
  • [8] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    ACTUATORS, 2022, 11 (06)
  • [9] Modularized data-driven approximation of the Koopman operator and generator
    Guo, Yang
    Schaller, Manuel
    Worthmann, Karl
    Streif, Stefan
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 476
  • [10] Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques
    Cisneros, Pablo S. G.
    Datar, Adwait
    Goettsch, Patrick
    Werner, Herbert
    IFAC PAPERSONLINE, 2020, 53 (02): : 6062 - 6068