Data-driven moving horizon state estimation of nonlinear processes using Koopman operator

被引:6
作者
Yin, Xunyuan [1 ]
Qin, Yan [2 ]
Liu, Jinfeng [3 ]
Huang, Biao [3 ]
机构
[1] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, 62 Nanyang Dr, Singapore 637459, Singapore
[2] Singapore Univ Technol & Dev, Engn & Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[3] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
关键词
Data-driven state estimation; Nonlinear process; Koopman identification; Moving horizon estimation; MODEL-PREDICTIVE CONTROL; SYSTEMS; DECOMPOSITION;
D O I
10.1016/j.cherd.2023.10.033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, a data-driven constrained state estimation method is proposed for nonlinear processes. Within the Koopman operator framework, we propose a data-driven model identification procedure for state estimation based on the algorithm of extended dynamic mode decomposition, which seeks an optimal approximation of the Koopman operator for a nonlinear process in a higher-dimensional space that correlates with the original process state-space via a prescribed nonlinear coordinate transformation. By implementing the proposed procedure, a linear state-space model can be established based on historic process data to describe the dynamics of a nonlinear process and the nonlinear dependence of the sensor measurements on process states. Based on the identified Koopman operator, a linear moving horizon estimation (MHE) algorithm that explicitly addresses constraints on the original process states is formulated to efficiently estimate the states in the higher-dimensional space. The states of the treated nonlinear process are recovered based on the state estimates provided by the MHE estimator designed in the higher-dimensional space. Two process examples are utilized to demonstrate the effectiveness and superiority of the proposed framework.
引用
收藏
页码:481 / 492
页数:12
相关论文
共 56 条
[1]   Receding-horizon estimation for discrete-time linear systems [J].
Alessandri, A ;
Baglietto, M ;
Battistelli, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) :473-478
[2]  
Arbabi H, 2018, IEEE DECIS CONTR P, P6409, DOI 10.1109/CDC.2018.8619720
[3]   Data-Driven Control of Soft Robots Using Koopman Operator Theory [J].
Bruder, Daniel ;
Fu, Xun ;
Gillespie, R. Brent ;
Remy, C. David ;
Vasudevan, Ram .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) :948-961
[4]   Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control [J].
Brunton, Steven L. ;
Brunton, Bingni W. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PLOS ONE, 2016, 11 (02)
[5]   Applied Koopmanism [J].
Budisic, Marko ;
Mohr, Ryan ;
Mezic, Igor .
CHAOS, 2012, 22 (04)
[6]   Data-driven robust model predictive control framework for stem water potential regulation and irrigation in water management [J].
Chen, Wei-Han ;
Shang, Chao ;
Zhu, Siyu ;
Haldeman, Kathryn ;
Santiago, Michael ;
Stroock, Abraham Duncan ;
You, Fengqi .
CONTROL ENGINEERING PRACTICE, 2021, 113
[7]   Distributed model predictive control: A tutorial review and future research directions [J].
Christofides, Panagiotis D. ;
Scattolini, Riccardo ;
Munoz de la Pena, David ;
Liu, Jinfeng .
COMPUTERS & CHEMICAL ENGINEERING, 2013, 51 :21-41
[8]   Machine learning-based ethylene and carbon monoxide estimation, real-time optimization, and multivariable feedback control of an experimental electrochemical reactor [J].
Citmaci, Berkay ;
Luo, Junwei ;
Jang, Joon Baek ;
Morales-Guio, Carlos G. ;
Christofides, Panagiotis D. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 191 :658-681
[9]   Integrating operations and control: A perspective and roadmap for future research [J].
Daoutidis, Prodromos ;
Lee, Jay H. ;
Harjunkoski, Iiro ;
Skogestad, Sigurd ;
Baldea, Michael ;
Georgakis, Christos .
COMPUTERS & CHEMICAL ENGINEERING, 2018, 115 :179-184
[10]   Sustainability and process control: A survey and perspective [J].
Daoutidis, Prodromos ;
Zachar, Michael ;
Jogwar, Sujit S. .
JOURNAL OF PROCESS CONTROL, 2016, 44 :184-206