Efficient photothermal CO2 methanation over NiFe alloy nanoparticles with enhanced localized surface plasmon resonance effect

被引:19
作者
Li, Jiarong [1 ]
Xu, Qi [1 ]
Han, Yaoyao [1 ]
Guo, Zhiyong [1 ]
Zhao, Liangqun [1 ,2 ]
Cheng, Kang [1 ,2 ]
Zhang, Qinghong [1 ]
Wang, Ye [1 ,2 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
photothermal catalysis; bimetallic; LSPR effect; CO2; utilization; hydrogen storage; CARBON-DIOXIDE; FUNDAMENTALS; REDUCTION; MECHANISM;
D O I
10.1007/s11426-023-1876-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The methanation of CO2 using green hydrogen not only consumes CO2 as a carbon resource but also stores H-2 with high density. However, the activation of CO2 molecules under mild conditions is challenging due to their inert nature. Herein, we report an efficient photothermal catalytic system using light irradiation which realizes the complete conversion of CO2 to methane without external heating. Over optimum bimetallic NiFe nanoparticles (NPs) with a Ni/Fe atomic ratio of 7, the CO2 conversion can reach up to 98% with a CH4 selectivity of 99%, and no catalyst deactivation was observed for more than 100 h, outperforming the reported catalysts. The catalytic performance is strongly dependent on the structure promoters, light absorption efficiency, NiFe particle sizes, and Ni/Fe ratio. The NiFe alloy NPs with an average size of similar to 21 nm dispersed on alumina nanosheets are evidenced to enhance the localized surface plasmon resonance (LSPR) effect, thus efficiently triggering the CO2 methanation. This work emphasizes and clarifies the important role of LSPR in CO2 hydrogenation, which may benefit the rational utilization of CO2 using solar power.
引用
收藏
页码:3518 / 3524
页数:7
相关论文
共 34 条
[1]   Greenhouse-inspired supra-photothermal CO2 catalysis [J].
Cai, Mujin ;
Wu, Zhiyi ;
Li, Zhao ;
Wang, Lu ;
Sun, Wei ;
Tountas, Athanasios A. ;
Li, Chaoran ;
Wang, Shenghua ;
Feng, Kai ;
Xu, Ao-Bo ;
Tang, Sanli ;
Tavasoli, Alexandra ;
Peng, Meiwen ;
Liu, Wenxuan ;
Helmy, Amr S. ;
He, Le ;
Ozin, Geoffrey A. ;
Zhang, Xiaohong .
NATURE ENERGY, 2021, 6 (08) :807-814
[2]   Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections [J].
Evanoff, DD ;
Chumanov, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (37) :13957-13962
[3]   Global Carbon Budget 2020 [J].
Friedlingstein, Pierre ;
O'Sullivan, Michael ;
Jones, Matthew W. ;
Andrew, Robbie M. ;
Hauck, Judith ;
Olsen, Are ;
Peters, Glen P. ;
Peters, Wouter ;
Pongratz, Julia ;
Sitch, Stephen ;
Le Quere, Corinne ;
Canadell, Josep G. ;
Ciais, Philippe ;
Jackson, Robert B. ;
Alin, Simone ;
Aragao, Luiz E. O. C. ;
Arneth, Almut ;
Arora, Vivek ;
Bates, Nicholas R. ;
Becker, Meike ;
Benoit-Cattin, Alice ;
Bittig, Henry C. ;
Bopp, Laurent ;
Bultan, Selma ;
Chandra, Naveen ;
Chevallier, Frederic ;
Chini, Louise P. ;
Evans, Wiley ;
Florentie, Liesbeth ;
Forster, Piers M. ;
Gasser, Thomas ;
Gehlen, Marion ;
Gilfillan, Dennis ;
Gkritzalis, Thanos ;
Gregor, Luke ;
Gruber, Nicolas ;
Harris, Ian ;
Hartung, Kerstin ;
Haverd, Vanessa ;
Houghton, Richard A. ;
Ilyina, Tatiana ;
Jain, Atul K. ;
Joetzjer, Emilie ;
Kadono, Koji ;
Kato, Etsushi ;
Kitidis, Vassilis ;
Korsbakken, Jan Ivar ;
Landschutzer, Peter ;
Lefevre, Nathalie ;
Lenton, Andrew .
EARTH SYSTEM SCIENCE DATA, 2020, 12 (04) :3269-3340
[4]   Green Carbon Science: Keeping the Pace in Practice [J].
Gao, Peng ;
Zhong, Liangshu ;
Han, Buxing ;
He, Mingyuan ;
Sun, Yuhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (46)
[5]   Principles of photothermal gas-phase heterogeneous CO2 catalysis [J].
Ghoussoub, Mireille ;
Xia, Meikun ;
Duchesne, Paul N. ;
Segal, Dvira ;
Ozin, Geoffrey .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (04) :1122-1142
[6]   Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co3O4 [J].
Gu, Yujie ;
Ding, Jie ;
Tong, Xiao ;
Yao, Hai ;
Yang, Runyu ;
Zhong, Qin .
JOURNAL OF CO2 UTILIZATION, 2022, 61
[7]   Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study [J].
Huynh, Huong Lan ;
Zhu, Jie ;
Zhang, Guanghui ;
Shen, Yongli ;
Tucho, Wakshum Mekonnen ;
Ding, Yi ;
Yu, Zhixin .
JOURNAL OF CATALYSIS, 2020, 392 :266-277
[8]   Iron promoted MOF-derived carbon encapsulated NiFe alloy nanoparticles core-shell catalyst for CO2 methanation [J].
Li, Yan-Ting ;
Zhou, Lei ;
Cui, Wen-Gang ;
Li, Zhuo-Fei ;
Li, Wei ;
Hu, Tong -Liang .
JOURNAL OF CO2 UTILIZATION, 2022, 62
[9]   Experimental and theoretical insights into an enhanced CO2 methanation mechanism over a Ru-based catalyst [J].
Li, Yangyang ;
Liu, Zhisong ;
Rao, Zhiqiang ;
Yu, Feng ;
Bao, Wentao ;
Tang, Ying ;
Zhao, Huanhuan ;
Zhang, Jie ;
Wang, Zijun ;
Li, Jiangbing ;
Huang, Zeai ;
Zhou, Ying ;
Li, Yongsheng ;
Dai, Bin .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 319
[10]   Electrically Conductive, Optically Responsive, and Highly Orientated Ti3C2Tx MXene Aerogel Fibers [J].
Li, Yuzhen ;
Zhang, Xuetong .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (04)