Thin, Highly Ionic Conductive, and Mechanically Robust Frame-Based Solid Electrolyte Membrane for All-Solid-State Li Batteries

被引:13
作者
Kim, Dohwan [1 ]
Lee, Hyobin [1 ]
Roh, Youngjoon [1 ]
Lee, Jongjun [1 ]
Song, Jihun [1 ]
Dzakpasu, Cyril Bubu [1 ]
Kang, Seok Hun [2 ]
Choi, Jaecheol [2 ]
Kim, Dong Hyeon [3 ]
Hah, Hoe Jin [3 ]
Cho, Kuk Young [4 ]
Lee, Young-Gi [1 ,2 ]
Lee, Yong Min [5 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Energy Sci & Engn, 333 Techno Jungang Daero, Dalseong Gun 42988, Daegu, South Korea
[2] Elect & Telecommun Res Inst ETRI, Mat & Components Res Div, 218 Gajeongno, Daejeon 34129, South Korea
[3] LG Energy Solut, Battery R&D, 10 Magokjungang 10 Ro, Seoul 07796, South Korea
[4] Hanyang Univ, Dept Mat Sci & Chem Engn, 55 Hanyangdaehak Ro, Ansan 15588, Gyeonggi, South Korea
[5] Daegu Gyeongbuk Inst Sci & Technol DGIST, Energy Sci & Engn Res Ctr, 333 Techno Jungang Daero, Dalseong Gun 42988, Daegu, South Korea
基金
新加坡国家研究基金会;
关键词
all-solid-state batteries; solid electrolyte membranes; sulfides; thin membranes; LITHIUM METAL ANODES; HIGH-ENERGY DENSITY; POLYETHYLENE SEPARATORS; MECHANISMS; CHALLENGES; STABILITY; DENDRITE; GROWTH;
D O I
10.1002/aenm.202302596
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A thin but robust solid electrolyte layer is crucial for realizing the theoretical energy density of all-solid-state batteries (ASSBs) beyond state-of-the-art Li-ion batteries (LIBs). This study proposes a simple but practical strategy for fabricating thin solid electrolyte membranes using 5-mu m perforated polyethylene separators with 35% open areas as the supporting component, which ensures mechanical robustness for commercial-level cell assembly. The thickness of this frame-based solid electrolyte (f-SE) membrane can be reduced to approximate to 45 mu m, even after coating the Li6PS5Cl (LPSCl) solid electrolyte composite. Despite a slightly lower ionic conductivity compared to that of thick LPSCl pellets, the f-SE membranes show high conductance and low overpotential in Li||Li symmetric cells. Their incorporation into LiNi0.7Co0.15Mn0.15O2 full cells increases the reversible capacity and rate capability compared to those of cells with conventional LPSCl pellets. The f-SE membrane cells exhibit excellent cycling stability over 250 cycles, while maintaining high-capacity retention and Coulombic efficiency. Notably, the f-SE membranes significantly increase the energy density of ASSBs (314 Wh kg-1), exceeding the values reported for sulfide-based cells. These results highlight the crucial role of f-SE membranes in improving the mechanical properties and energy density of ASSBs, thereby contributing to the development of next-generation Li battery technologies. A strategy for design thin and robust solid electrolyte (SE) membranes is proposed by simply introducing a perforated polyethylene separator as supporting frame. The frame-based SE membranes exhibit excellent mechanical strength properties and high ionic conductance, result in high-capacity retention and stable cycling in NCM||Li cells with an extreme mono-cell-level energy density of 314 Wh kg-1.image
引用
收藏
页数:11
相关论文
共 60 条
[1]   Recent progress of composite polyethylene separators for lithium/ sodium batteries [J].
Babiker, Dafaalla M. D. ;
Usha, Zubaida Rukhsana ;
Wan, Caixia ;
Hassaan, Mohmmed Mun ELseed ;
Chen, Xin ;
Li, Liangbin .
JOURNAL OF POWER SOURCES, 2023, 564
[2]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[3]   Processing thin but robust electrolytes for solid-state batteries [J].
Balaish, Moran ;
Gonzalez-Rosillo, Juan Carlos ;
Kim, Kun Joong ;
Zhu, Yuntong ;
Hood, Zachary D. ;
Rupp, Jennifer L. M. .
NATURE ENERGY, 2021, 6 (03) :227-239
[4]   Amphipathic Binder Integrating Ultrathin and Highly Ion-Conductive Sulfide Membrane for Cell-Level High-Energy-Density All-Solid-State Batteries [J].
Cao, Daxian ;
Li, Qiang ;
Sun, Xiao ;
Wang, Ying ;
Zhao, Xianhui ;
Cakmak, Ercan ;
Liang, Wentao ;
Anderson, Alexander ;
Ozcan, Soydan ;
Zhu, Hongli .
ADVANCED MATERIALS, 2021, 33 (52)
[5]   Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Qiang ;
Natan, Avi ;
Xiang, Pengyang ;
Zhu, Hongli .
MATTER, 2020, 3 (01) :57-94
[6]   Overpotential analysis of graphite-based Li-ion batteries seen from a porous electrode modeling perspective [J].
Chen, Zhiqiang ;
Danilov, Dmitri L. ;
Raijmakers, Luc H. J. ;
Chayambuka, Kudakwashe ;
Jiang, Ming ;
Zhou, Lei ;
Zhou, Jiang ;
Eichel, Rudiger-A. ;
Notten, Peter H. L. .
JOURNAL OF POWER SOURCES, 2021, 509
[7]   Ceramic-Based Flexible Sheet Electrolyte for Li Batteries [J].
Cheng, Eric Jianfeng ;
Kimura, Takeshi ;
Shoji, Mao ;
Ueda, Hiroshi ;
Munakata, Hirokazu ;
Kanamura, Kiyoshi .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (09) :10382-10388
[8]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[9]   Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure [J].
Duffner, Fabian ;
Kronemeyer, Niklas ;
Tuebke, Jens ;
Leker, Jens ;
Winter, Martin ;
Schmuch, Richard .
NATURE ENERGY, 2021, 6 (02) :123-134
[10]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267