SOME CHARACTERIZATIONS OF LIPSCHITZ SPACES VIA COMMUTATORS OF THE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON SLICE SPACES

被引:0
作者
Yang, Heng [1 ]
Zhou, Jiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Xinjiang, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2023年 / 24卷 / 03期
基金
中国国家自然科学基金;
关键词
slice space; Lipschitz space; Hardy-Littlewood maximal operator; commutator; BOUNDEDNESS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let M be the Hardy-Littlewood maximal operator and b be a locally integrable function. Denote by M-b and [b, M] the maximal commutator and the nonlinear commutator of M with b. In this paper, we give necessary and sufficient conditions for the boundedness of M-b and [b, M] on slice spaces when the function b belongs to Lipschitz spaces, by which a new characterization of non-negative Lipschitz functions is obtained.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 23 条
  • [1] A note on maximal commutators and commutators of maximal functions
    Agcayazi, Mujdat
    Gogatishvili, Amiran
    Koca, Kerim
    Mustafayev, Rza
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (02) : 581 - 593
  • [2] Representation and uniqueness for boundary value elliptic problems via first order systems
    Auscher, Pascal
    Mourgoglou, Mihalis
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (01) : 241 - 315
  • [3] Tent space boundedness via extrapolation
    Auscher, Pascal
    Prisuelos-Arribas, Cruz
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1575 - 1604
  • [4] Commutators for the maximal and sharp functions
    Bastero, J
    Milman, M
    Ruiz, FJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) : 3329 - 3334
  • [5] FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES
    COIFMAN, RR
    ROCHBERG, R
    WEISS, G
    [J]. ANNALS OF MATHEMATICS, 1976, 103 (03) : 611 - 635
  • [6] DEVORE RA, 1984, MEM AM MATH SOC, V47, P1
  • [7] WEIGHTED NORM INEQUALITIES FOR COMMUTATORS OF STRONGLY SINGULAR-INTEGRALS
    GARCIACUERVA, J
    HARBOURE, E
    SEGOVIA, C
    TORREA, JL
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (04) : 1397 - 1420
  • [8] MEAN OSCILLATION AND COMMUTATORS OF SINGULAR INTEGRAL-OPERATORS
    JANSON, S
    [J]. ARKIV FOR MATEMATIK, 1978, 16 (02): : 263 - 270
  • [9] JANSON S, 1983, LECT NOTES MATH, V992, P101
  • [10] ON FUNCTIONS OF BOUNDED MEAN OSCILLATION
    JOHN, F
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1961, 14 (03) : 415 - &