Stability of AN-Operators under Functional Calculus

被引:0
作者
Ramesh, G. [1 ]
Osaka, H. [2 ]
Udagawa, Y. [3 ]
Yamazaki, T. [4 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Math, Sangareddy 502285, Telangana, India
[2] Ritsumeikan Univ, Dept Math Sci, Kusatsu, Shiga 5258577, Japan
[3] Naruto Univ Educ, Dept Adv Practice Sch Educ, 748 Nakajima,Naruto Cho, Naruto 7728502, Japan
[4] Toyo Univ, Dept Elect Elect & Comp Engn, Kawagoe, Saitama 3508585, Japan
关键词
norm attaining operator; absolutely norm attaining operator; essential spectrum; functional calculus;
D O I
10.1007/s10476-023-0231-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we discuss absolutely norm attaining property (AN-property in short) of the Jordan product and Lie-bracket. We propose a functional calculus for positive absolutely norm attaining operators and discuss the stability of the AN-property under the functional calculus. As a consequence we discuss the operator mean of positive AN-operators.
引用
收藏
页码:825 / 839
页数:15
相关论文
共 30 条
[1]  
[Anonymous], 1967, A Hilbert Space Problem Book
[2]  
[Anonymous], 1980, Introduction to Functional Analysis
[3]  
Bala N, 2024, Arxiv, DOI arXiv:2002.09167
[4]   A representation of hyponormal absolutely norm attaining operators [J].
Bala, Neeru ;
Ramesh, G. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 171
[5]   Spectral properties of absolutely minimum attaining operators [J].
Bala, Neeru ;
Golla, Ramesh .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (03) :630-649
[6]   THE ESSENTIAL MINIMUM MODULUS [J].
BOULDIN, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :513-517
[7]   Operators that attain their minima [J].
Carvajal, Xavier ;
Neves, Wladimir .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (02) :293-312
[8]   Operators That Achieve the Norm [J].
Carvajal, Xavier ;
Neves, Wladimir .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 72 (02) :179-195
[9]  
Conway J. B., 2019, Graduate Texts in Mathematics, V96
[10]  
Douglas R.G., 1988, BANACH ALGEBRA TECHN