Quantile-Based Multivariate Log-Normal Distribution

被引:2
作者
Moran-Vasquez, Raul Alejandro [1 ]
Roldan-Correa, Alejandro [1 ]
Nagar, Daya K. [1 ]
机构
[1] Univ Antioquia, Inst Matemat, Calle 67 53-108, Medellin 050010, Colombia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 08期
关键词
Kullback-Leibler divergence; mixed moments; independence; multivariate log-normal distribution; quantile-based distribution; REGRESSION;
D O I
10.3390/sym15081513
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a quantile-based multivariate log-normal distribution, providing a new multivariate skewed distribution with positive support. The parameters of this distribution are interpretable in terms of quantiles of marginal distributions and associations between pairs of variables, a desirable feature for statistical modeling purposes. We derive statistical properties of the quantile-based multivariate log-normal distribution involving the transformations, closed-form expressions for the mixed moments, expected value, covariance matrix, mode, Shannon entropy, and Kullback-Leibler divergence. We also present results on marginalization, conditioning, and independence. Additionally, we discuss parameter estimation and verify its performance through simulation studies. We evaluate the model fitting based on Mahalanobis-type distances. An application to children data is presented.
引用
收藏
页数:15
相关论文
共 50 条
[31]   Designing the Boltzmann Estimation of Multivariate Normal Distribution: issues, goals and solutions [J].
Segovia-Dominguez, Ignacio ;
Hernandez-Aguirre, Arturo ;
Ivvan Valdez, S. .
2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, :2082-2089
[32]   Shannon entropy and Kullback-Leibler divergence in multivariate log fundamental skew-normal and related distributions [J].
De Queiroz, Marina M. ;
Silva, Roger W. C. ;
Loschi, Rosangela H. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (02) :219-237
[33]   Extremal properties of the multivariate extended skew-normal distribution, Part B [J].
Beranger, B. ;
Padoan, S. A. ;
Xu, Y. ;
Sisson, S. A. .
STATISTICS & PROBABILITY LETTERS, 2019, 147 :105-114
[34]   Skew-normal distribution in the multivariate null intercept measurement error model [J].
Labra, F. V. ;
Aoki, R. ;
Garibay, V. ;
Lachos, V. H. .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2011, 25 (02) :145-170
[35]   Role of energy transition in easing energy security risk and decreasing CO2 emissions: Disaggregated level evidence from the USA by quantile-based models [J].
Kartal, Mustafa Tevfik ;
Taskin, Dilvin ;
Shahbaz, Muhammad ;
Kirikkaleli, Dervis ;
Depren, Serpil Kilic .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 359
[36]   Multivariate generalized gamma distribution for content based image retrieval [J].
El Maliani, Ahmed Drissi ;
El Hassouni, Mohammed ;
Berthoumieu, Yannick ;
Aboutajdine, Driss .
Journal of Convergence Information Technology, 2012, 7 (20) :319-327
[37]   Patent Keyword Analysis Using Regression Modeling Based on Quantile Cumulative Distribution Function [J].
Park, Sangsung ;
Jun, Sunghae .
ELECTRONICS, 2024, 13 (21)
[38]   Quantile based modeling of diurnal temperature range with the five-parameter lambda distribution [J].
Vandeskog, Silius M. ;
Thorarinsdottir, Thordis L. ;
Steinsland, Ingelin ;
Lindgren, Finn .
ENVIRONMETRICS, 2022, 33 (04)
[39]   A mixed effects log-linear model based on the Birnbaum-Saunders distribution [J].
Desmond, A. F. ;
Cintora Gonzalez, Carlos L. ;
Singh, R. S. ;
Lu, Xuewen .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) :399-407
[40]   Analysis of over-dispersed count data with extra zeros using the Poisson log-skew-normal distribution [J].
Hassanzadeh, Fatemeh ;
Kazemi, Iraj .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (13) :2644-2662