Integral Points on Varieties With Infinite etale Fundamental Group

被引:0
作者
Achenjang, Niven T. [1 ]
Morrow, Jackson S. [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
APPROXIMATION; SUBVARIETIES; COMPLEMENT;
D O I
10.1093/imrn/rnad147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study integral points on varieties with infinite etale fundamental groups. More precisely, for a number field F and X/F a smooth projective variety, we prove that for any geometrically Galois cover phi : Y -> X of degree at least 2 dim(X)(2), there exists an ample line bundle L on Y such that for a general member D of the complete linear system |L|, D is geometrically irreducible and any set of phi (D)-integral points on X is finite. We apply this result to varieties with infinite etale fundamental group to give new examples of irreducible, ample divisors on varieties for which finiteness of integral points is provable.
引用
收藏
页码:8157 / 8171
页数:15
相关论文
共 25 条
[1]   REGARDING THE NON-DENSITY OF INTEGRAL POINTS [J].
Autissier, Pascal .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (01) :13-27
[2]  
Autissier P, 2009, ANN SCI ECOLE NORM S, V42, P221
[3]  
Brunebarbe Y., 2020, PREPRINT
[4]  
Brunebarbe Y., 2022, PREPRINT
[5]  
Chen W., MATHOVERFLOW
[6]   On integral points on surfaces [J].
Corvaja, P ;
Zannier, U .
ANNALS OF MATHEMATICS, 2004, 160 (02) :705-726
[7]   A subspace theorem approach to integral points on curves [J].
Corvaja, P ;
Zannier, U .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (04) :267-271
[8]   INTEGRAL POINTS ON THREEFOLDS AND OTHER VARIETIES [J].
Corvaja, Pietro ;
Levin, Aaron ;
Zannier, Umberto .
TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (04) :589-601
[9]  
Faltings G, 2002, PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, P231
[10]   DIOPHANTINE APPROXIMATION ON ABELIAN-VARIETIES [J].
FALTINGS, G .
ANNALS OF MATHEMATICS, 1991, 133 (03) :549-576