TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides

被引:15
作者
Zhou, Wanyun [1 ]
Liu, Yufei [1 ]
Li, Yingxin [2 ]
Kong, Siqi [1 ]
Wang, Weilin [1 ]
Ding, Boyun [1 ]
Han, Jiyun [3 ]
Mou, Chaozhou [3 ]
Gao, Xin [4 ]
Liu, Juntao [3 ]
机构
[1] Shandong Univ Weihai, SDU ANU Joint Sci Coll, Weihai 264209, Peoples R China
[2] Shandong Univ Weihai, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
[3] Shandong Univ Weihai, Sch Math & Stat, Weihai 264209, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Computat Biosci Res Ctr CBRC, Comp Elect & Math Sci & Engn Div, Thuwal 23955, Saudi Arabia
来源
PATTERNS | 2023年 / 4卷 / 03期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
VALIDATION; CALIBRATION; CLASSIFIER; SET;
D O I
10.1016/j.patter.2023.100702
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate identification of anticancer peptides (ACPs) and antimicrobial peptides (AMPs) remains a computational challenge. We propose a tri-fusion neural network termed TriNet for the accurate prediction of both ACPs and AMPs. The framework first defines three kinds of features to capture the peptide information contained in serial fingerprints, sequence evolutions, and physicochemical properties, which are then fed into three parallel modules: a convolutional neural network module enhanced by channel attention, a bidirectional long short-term memory module, and an encoder module for training and final classification. To achieve a bet-ter training effect, TriNet is trained via a training approach using iterative interactions between the samples in the training and validation datasets. TriNet is tested on multiple challenging ACP and AMP datasets and ex-hibits significant improvements over various state-of-the-art methods. The web server and source code of TriNet are respectively available at http://liulab.top/TriNet/server and https://github.com/wanyunzh/TriNet.
引用
收藏
页数:14
相关论文
共 48 条
  • [1] AntiCP 2.0: an updated model for predicting anticancer peptides
    Agrawal, Piyush
    Bhagat, Dhruv
    Mahalwal, Manish
    Sharma, Neelam
    Raghava, Gajendra P. S.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
  • [2] ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides
    Ahmed, Sajid
    Muhammod, Rafsanjani
    Khan, Zahid Hossain
    Adilina, Sheikh
    Sharma, Alok
    Shatabda, Swakkhar
    Dehzangi, Abdollah
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [4] Anticancer Activities of Antimicrobial BmKn2 Peptides Against Oral and Colon Cancer Cells
    Arpornsuwan, Teerakul
    Sriwai, Wimolpak
    Jaresitthikunchai, Janthima
    Phaonakrop, Narumon
    Sritanaudomchai, Hathaitip
    Roytrakul, Sittiruk
    [J]. INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS, 2014, 20 (04) : 501 - 509
  • [5] Next-Generation Approaches Needed to Tackle Antimicrobial Resistance for the Development of Novel Therapies Against the Deadly Pathogens
    Bhandari, Vasundhra
    Suresh, Akash
    [J]. FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [6] Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds
    Bjorn, Camilla
    Noppa, Laila
    Salomonsson, Emelie Naslund
    Johansson, Anna-Lena
    Nilsson, Elin
    Mahlapuu, Margit
    Hakansson, Joakim
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2015, 45 (05) : 519 - 524
  • [7] A novel antimicrobial peptide against dental-caries-associated bacteria
    Chen, Long
    Jia, Lili
    Zhang, Qiang
    Zhou, Xirui
    Liu, Zhuqing
    Li, Bingjie
    Zhu, Zhentai
    Wang, Fenwei
    Yu, Changyuan
    Zhang, Qian
    Chen, Feng
    Luo, Shi-Zhong
    [J]. ANAEROBE, 2017, 47 : 165 - 172
  • [8] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [9] Some remarks on protein attribute prediction and pseudo amino acid composition
    Chou, Kuo-Chen
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2011, 273 (01) : 236 - 247
  • [10] Dubchak I, 1999, PROTEINS, V35, P401, DOI 10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO