Contribution of biomass burning to black carbon deposition on Andean glaciers: consequences for radiative forcing

被引:7
作者
Bonilla, E. X. [1 ,2 ]
Mickley, L. J. [1 ]
Beaudon, E. G. [3 ]
Thompson, L. G. [3 ]
Rodriguez, W. E. [4 ]
Encarnacion, R. Cruz [5 ]
Whicker, C. A. [6 ]
Flanner, M. G. [6 ]
Schmitt, C. G. [7 ]
Ginot, P. [8 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Howard Univ, Interdisciplinary Studies Dept, Washington, DC 20059 USA
[3] Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH USA
[4] Univ Nacl Santiago Antunez de Mayolo, Huaraz, Peru
[5] Autoridad Nacl Agua, Huaraz, Peru
[6] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI USA
[7] Univ Alaska, Fairbanks, AK USA
[8] Univ Grenoble Alpes, Grenoble, France
基金
美国国家科学基金会;
关键词
snow albedo; black carbon; biomass burning; radiative forcing; Andes; CORDILLERA BLANCA; MASS-BALANCE; SPECTRAL ALBEDO; TROPICAL ANDES; AMAZON BASIN; SNOW COVER; ICE-CORE; AEROSOLS; CLIMATE; IMPACT;
D O I
10.1088/1748-9326/acb371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Andean glaciers have melted rapidly since the 1960s. While some melting is likely due to anthropogenic climate change driven by increasing greenhouse gases, deposition of light-absorbing particles such as black carbon (BC) may also play a role. We hypothesize that BC from fires in the Amazon Basin and elsewhere may be deposited on Andean glaciers, reducing the surface albedo and inducing further melting. Here we investigate the role of BC deposition on albedo changes in the Andes for 2014-2019 by combining atmospheric chemistry modeling with observations of BC in snow or ice at four mountain sites in Peru (Quelccaya, Huascaran, Yanapaccha, and Shallap) and at one site in Bolivia (Illimani). We find that annual mean ice BC concentrations simulated by the chemical transport model GEOS-Chem for 2014-2019 are roughly consistent with those observed at the site with the longest record, Huascaran, with overestimates of 15%-40%. Smoke from fires account for 20%-70% of total wet and dry deposition fluxes, depending on the site. The rest of BC deposited comes from fossil fuel combustion. Using a snow albedo model, we find that the annual mean radiative forcing from the deposition of smoke BC alone on snow ranges from +0.1 to +3.2 W m(-2) under clear-sky conditions, with corresponding average albedo reductions of 0.04%-1.1%. These ranges are dependent on site and snow grain size. This result implies a potentially significant climate impact of biomass burning in the Amazon on radiative forcing in the Andes.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Influence of longer dry seasons in the Southern Amazon on patterns of water vapor transport over northern South America and the Caribbean [J].
Agudelo, Jhoana ;
Arias, Paola A. ;
Vieira, Sara C. ;
Alejandro Martinez, J. .
CLIMATE DYNAMICS, 2019, 52 (5-6) :2647-2665
[2]   Drought-induced biomass burning as a source of black carbon to the central Himalaya since 1781CE as reconstructed from the Dasuopu ice core [J].
Barker, Joel D. ;
Kaspari, Susan ;
Gabrielli, Paolo ;
Wegner, Anna ;
Beaudon, Emilie ;
Sierra-Hernandez, M. Roxana ;
Thompson, Lonnie .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (07) :5615-5633
[3]   Clarifying Amazonia's burning crisis [J].
Barlow, Jos ;
Berenguer, Erika ;
Carmenta, Rachel ;
Franca, Filipe .
GLOBAL CHANGE BIOLOGY, 2020, 26 (02) :319-321
[4]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[5]   Aerosol transport over the Andes from the Amazon Basin to the remote Pacific Ocean: A multiyear CALIOP assessment [J].
Bourgeois, Quentin ;
Ekman, Annica M. L. ;
Krejci, Radovan .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (16) :8411-8425
[6]   Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol absorption [J].
Breider, Thomas J. ;
Mickley, Loretta J. ;
Jacob, Daniel J. ;
Wang, Qiaoqiao ;
Fisher, Jenny A. ;
Chang, Rachel. Y. -W. ;
Alexander, Becky .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (07) :4107-4124
[7]   Black carbon pollution in snow and its impact on albedo near the Chilean stations on the Antarctic peninsula: First results [J].
Cereceda-Balic, Francisco ;
Vidal, Victor ;
Florencia Ruggeri, Maria ;
Gonzalez, Humberto E. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 743
[8]   Measurements of light-absorbing particles in snow across the Arctic, North America, and China: Effects on surface albedo [J].
Dang, Cheng ;
Warren, Stephen G. ;
Fu, Qiang ;
Doherty, Sarah J. ;
Sturm, Matthew ;
Su, Jing .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (19) :10149-10168
[9]  
Darmenov A S., 2015, NASA Technical Report Series on Global Modeling and Data Assimilation, V38
[10]   First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory, Peru [J].
Estevan, Rene ;
Martinez-Castro, Daniel ;
Suarez-Salas, Luis ;
Moya, Aldo ;
Silva, Yamina .
ATMOSPHERIC ENVIRONMENT-X, 2019, 3