A new hybrid estimator for linear regression model analysis: Computations and simulations

被引:7
作者
Shewa, G. A. [1 ]
Ugwuowo, F. I. [2 ]
机构
[1] Taraba State Univ, Dept Math Sci, Jalingo, Nigeria
[2] Univ Nigeria, Dept Stat, Nsukka, Nigeria
关键词
Kibria; Lukman Estimator; Least Square; Linear Dependency; Modified Ridge; Type; Ridge Estimator; LIU-TYPE ESTIMATOR; BIASED ESTIMATOR; RIDGE-REGRESSION; COMBAT;
D O I
10.1016/j.sciaf.2022.e01441
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Linear regression model explores the relationship between a response variable and one or more independent variables. The parameters in the model are often estimated using the Ordinary Least Square Estimator (OLSE). However, OLSE suffers a breakdown when there is linear dependency among the predictors-a condition called multicollinearity. Several alternative estimators have been suggested as replacements for the OLSE. These include the Kibria-Lukman estimator and the modified ridge-type estimator. In this study, we pro-posed a hybrid estimator by combining the Kibria-Lukman estimator with the modified ridge-type estimator. The proposed estimator theoretically dominates the existing estima-tors. The simulation studies and real-life application supports the theoretical findings.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:11
相关论文
共 39 条
[1]   Another proposal about the new two-parameter estimator for linear regression model with correlated regressors [J].
Ahmad, Shakeel ;
Aslam, Muhammad .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (06) :3054-3072
[2]  
Ajiboye SA, 2018, Int. J. Civil Eng. Technol, V9, P2838
[3]  
Aladeitan Benedicta B, 2021, F1000Res, V10, P548, DOI 10.12688/f1000research.53987.1
[4]  
Algamal Z., 2022, J MATH-UK, V1, P1
[5]   The modified Liu-ridge-type estimator: a new class of biased estimators to address multicollinearity [J].
Aslam, Muhammad ;
Ahmad, Shakeel .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) :6591-6609
[6]  
Awwad F.A., 2022, WSEAS Trans. Math, V21, P403, DOI 10.37394/23206.2022.21.48
[7]   Combining two-parameter and principal component regression estimators [J].
Chang, Xinfeng ;
Yang, Hu .
STATISTICAL PAPERS, 2012, 53 (03) :549-562
[8]  
Dawoud Issam, 2022, WSEAS Transactions on Mathematics, P641, DOI 10.37394/23206.2022.21.75
[9]  
Dawoud I., 2022, Sci. Afr, V17
[10]   A New Tobit Ridge-Type Estimator of the Censored Regression Model With Multicollinearity Problem [J].
Dawoud, Issam ;
Abonazel, Mohamed R. ;
Awwad, Fuad A. ;
Tag Eldin, Elsayed .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8