Low-temperature selective catalytic reduction of NOx with NH3 over in- situ grown MnOx-Fe2O3/TiO2/Ti monolithic catalyst

被引:16
|
作者
Cao, Guoqiang [1 ,2 ]
Yang, Liu [3 ]
Yang, Yiyan [2 ,3 ]
Feng, Lizhi [1 ,2 ]
Zhang, Xinglai [3 ]
Li, Jing [1 ,2 ]
Liu, Baodan [1 ,2 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, 11 Wenhua Rd, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Foshan Grad Sch Innovat, 2 Zhihui Rd, Foshan 528300, Peoples R China
[3] Chinese Acad Sci, Inst Met Res IMR, Shenyang Natl Lab Mat Sci SYNL, 72 Wenhua Rd, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Monolithic catalysts; Heterostructure; In -situ growth; TiO2; NH3-SCR; MANGANESE OXIDE CATALYSTS; SO2; RESISTANCE; PERFORMANCE; SCR; MN/TIO2; NH3-SCR; TIO2; NANOSTRUCTURES; SUBSTITUTION; MNOX/TIO2;
D O I
10.1016/j.jallcom.2022.168481
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design and synthesis of highly efficient and low-temperature NOx reduction catalysts with long-term stability and good water resistance still remain a challenge in the field of gas catalysis. In this work, we demonstrated the integration of MnOx-Fe2O3/TiO2/Ti monolithic catalysts on flexible Ti mesh through plasma electrolytic oxidation technology, associated with hydrothermal reaction, and chemical bath de-position methods. The in-situ grown TiO2 nanosheet supports hold a very strong substrate adhesion with Ti mesh, and provide ideal nucleation sites for the following deposition of high density of MnOx-Fe2O3 active components. The brush-like nanostructure morphology of active MnOx-Fe2O3 catalysts enables the com-plete adsorption and reaction of gas molecules on the catalyst surface. The selective catalytic reduction of NOx with NH3 tests indicate that MnOx-Fe2O3/TiO2/Ti monolithic catalysts exhibit excellent low-tempera-ture catalytic performance with 100% of NOx conversion at 137 degrees C, good stability and water resistance, showing great potential and broad application prospects in comparison with powder catalysts and hon-eycomb ceramic catalysts. The strategy of depositing multi-components active catalysts on in-situ grown ultra-thin TiO2 nanosheet supports on flexible Ti mesh paves a solid way toward the practical applications of novel low-temperature selective catalytic reduction catalysts in diverse fields.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Reversibility of Mn Valence State in MnOx/TiO2 Catalysts for Low-temperature Selective Catalytic Reduction for NO with NH3
    Kwang Hee Park
    Sang Moon Lee
    Sung Su Kim
    Dong Wook Kwon
    Sung Chang Hong
    Catalysis Letters, 2013, 143 : 246 - 253
  • [22] Catalytic performance research of N-doped MnOx/TiO2 for low-temperature selective reduction of NO with NH3
    Peng, Zuhui
    Zhong, Lei
    Li, Hongyu
    Zhang, Shule
    Zhong, Qin
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2013, 33 (35): : 58 - 66
  • [23] Nano-MnOx catalyst for the selective catalytic reduction of NO by NH3 in low-temperature
    Tang, Xiao-Long
    Hao, Ji-Ming
    Xu, Wen-Guo
    Li, Jun-Hua
    Huanjing Kexue/Environmental Science, 2007, 28 (02): : 289 - 294
  • [24] NH3 inhibits mercury oxidation over low-temperature MnOx/TiO2 SCR catalyst
    Li, Hailong
    Zhao, Jiexia
    Zhang, Weilin
    Yang, Jianping
    Wang, Jun
    Zhang, Mingguang
    Yang, Zequn
    Li, Liqing
    Shih, Kaimin
    FUEL PROCESSING TECHNOLOGY, 2018, 176 : 124 - 130
  • [25] New insight on N2O formation over MnOx/TiO2 catalysts for selective catalytic reduction of NOx with NH3
    Zeng, Yiqing
    Lyu, Fengye
    Wang, Yanan
    Zhang, Shule
    Zhong, Qin
    Zhong, Zhaoxiang
    MOLECULAR CATALYSIS, 2022, 525
  • [26] Performance and tolerance to SO2 of MnOx-WO3 /TiO2 catalyst for selective catalytic reduction of NOx with NH3
    Wu, Bi-Jun
    Xiao, Ping
    Ma, Jin
    Liu, Xiao-Qin
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2010, 30 (11): : 62 - 67
  • [27] Investigation of coating technology and catalytic performance over monolithic V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3
    Zhao, Kun
    Han, Weiliang
    Tang, Zhicheng
    Zhang, Guodong
    Lu, Jiangyin
    Lu, Gongxuan
    Zhen, Xinping
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 503 : 53 - 60
  • [28] Enhancement of Low-Temperature Catalytic Activity over a Highly Dispersed Fe-Mn/Ti Catalyst for Selective Catalytic Reduction of NOx with NH3
    Mu, Jincheng
    Li, Xinyong
    Sun, Wenbo
    Fan, Shiying
    Wang, Xinyang
    Wang, Liang
    Qin, Meichun
    Gan, Guoqiang
    Yin, Zhifan
    Zhang, Dongke
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (31) : 10159 - 10169
  • [29] Transition Metal Oxides Supported on TiO2 as Catalysts for the Low-Temperature Selective Catalytic Reduction of NOx by NH3
    Liebau, Michael
    Suprun, Wolodymyr
    Kasprick, Marcus
    Glaeser, Roger
    CATALYSTS, 2025, 15 (01)
  • [30] Low temperature selective catalytic reduction of NOx by NH3 over Cu modified V2O5/TiO2–carbon nanotube catalyst
    S. Raja
    M. S. Alphin
    Reaction Kinetics, Mechanisms and Catalysis, 2020, 129 : 787 - 804