Effects of penta-coordinated Al3+ sites and Ni defective sites on Ni/Al2O3 for CO methanation

被引:2
|
作者
Wang, Qianqian [1 ]
Cao, Min [1 ]
Fan, Liming [1 ]
Duchesne, Paul N. [2 ]
Wang, Pengfei [3 ]
Li, Sha [1 ]
Li, Ruifeng [1 ,4 ]
Yan, Xiaoliang [1 ,4 ]
机构
[1] Taiyuan Univ Technol, Coll Chem Engn & Technol, Taiyuan 030024, Shanxi, Peoples R China
[2] Queens Univ, Dept Chem, Kingston, ON, Canada
[3] Chinese Acad Sci, Inst Coal Chem, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan, Shanxi, Peoples R China
[4] Taiyuan Univ Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan, Shanxi, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
CO methanation; confinement; defective sites; Ni particle; penta-coordinated Al3+; WATER-GAS SHIFT; METAL-SUPPORT INTERACTION; SYNTHETIC NATURAL-GAS; CARBON-MONOXIDE; CATALYST; NICKEL; SURFACE; CONVERSION; FRAMEWORKS; ALUMINA;
D O I
10.1002/aic.17998
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Engineering sophisticated structure of Al2O3 and controlling the structure of counterpart metal active sites remain challenges to achieve a high catalytic-performance in heterogeneous catalysis. Herein, we present a confinement strategy to stabilize homogeneous Ni by penta-coordinated Al3+ anchoring sites in Al2O3. This approach is involved in using a metal-organic framework as host to load Ni2+ ions, by the aim of producing a confined Ni/Al2O3 catalyst after a standard calcination. Metal-support interaction between Ni and Al2O3 was tailored to be medium to avoid the formation of inactive NiAl2O4, which favors the generation of more available Ni active sites accessible to the reactants. The resultant Ni/Al2O3 exhibited superior catalytic performance in comparison with the control Ni/Al2O3 in CO methanation owing to the presence of defective sites on sufficient Ni-0 surface. Furthermore, the presence of oxygen vacancies on Al2O3 and hydrogen spillover contributed toward excellent coke resistance properties in the reaction.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Development of Highly Stable Ni-Al2O3 Catalysts for CO Methanation
    Qin, Zhifeng
    Ban, Hongyan
    Wang, Xiaoyue
    Wang, Zhibin
    Niu, Yanxia
    Yao, Ying
    Ren, Jun
    Chang, Liping
    Miao, Maoqian
    Xie, Kechang
    Li, Congming
    CATALYSIS LETTERS, 2021, 151 (09) : 2647 - 2657
  • [22] Ni/Al2O3 catalysts for CO2 methanation: Effect of silica and nickel loading
    Riani, Paola
    Spennati, Elena
    Garcia, Maria Villa
    Escribano, Vicente Sanchez
    Busca, Guido
    Garbarino, Gabriella
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (64) : 24976 - 24995
  • [23] Enhanced Investigation of CO Methanation over Ni/Al2O3 Catalysts for Synthetic Natural Gas Production
    Hu, Dacheng
    Gao, Jiajian
    Ping, Yuan
    Jia, Lihua
    Gunawan, Poernomo
    Zhong, Ziyi
    Xu, Guangwen
    Gu, Fangna
    Su, Fabing
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (13) : 4875 - 4886
  • [24] Porosity and Structure of Hierarchically Porous Ni/Al2O3 Catalysts for CO2 Methanation
    Weber, Sebastian
    Abel, Ken L.
    Zimmermann, Ronny T.
    Huang, Xiaohui
    Bremer, Jens
    Rihko-Struckmann, Liisa K.
    Batey, Darren
    Cipiccia, Silvia
    Titus, Juliane
    Poppitz, David
    Kuebel, Christian
    Sundmacher, Kai
    Glaeser, Roger
    Sheppard, Thomas L.
    CATALYSTS, 2020, 10 (12) : 1 - 22
  • [25] A study of Ni/Al2O3 and Ni-La/Al2O3 catalysts for the steam reforming of ethanol and phenol
    Garbarino, Gabriella
    Wang, Chongyang
    Valsamakis, Ioannis
    Chitsazan, Sahar
    Riani, Paola
    Finocchio, Elisabetta
    Flytzani-Stephanopoulos, Maria
    Busca, Guido
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 174 : 21 - 34
  • [26] CO and CO2 methanation over Ni/Al@Al2O3 core-shell catalyst
    Le, Thien An
    Kim, Jieun
    Kang, Jong Kyu
    Park, Eun Duck
    CATALYSIS TODAY, 2020, 356 : 622 - 630
  • [27] Structural Modification of Ni/γ-Al2O3 with Boron for Enhanced Carbon Resistance during CO Methanation
    Kambolis, Anastasios
    Ferri, Davide
    Lu, Ye
    Yannopoulos, Spyros N.
    Pokrant, Simone
    Rentsch, Daniel
    Kroecher, Oliver
    CHEMCATCHEM, 2015, 7 (20) : 3261 - 3265
  • [28] CO and CO2 Methanation Over Ni/γ-Al2O3 Prepared by Deposition-Precipitation Method
    Thien An Le
    Kang, Jong Kyu
    Lee, Sae Ha
    Park, Eun Duck
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (06) : 3252 - 3262
  • [29] Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas
    Li, Jun
    Zhou, Li
    Li, Pengcheng
    Zhu, Qingshan
    Gao, Jiajian
    Gu, Fangna
    Su, Fabing
    CHEMICAL ENGINEERING JOURNAL, 2013, 219 : 183 - 189
  • [30] CO2/CO methanation over Ru and Ni supported γ-Al2O3: A study on the effect of the stoichiometry of reactant gases
    Jabotra, Ganesh
    Yadav, Pradeep Kumar
    Kumar, Siddharth
    Sharma, Sudhanshu
    MOLECULAR CATALYSIS, 2023, 547