NUMBER OF CLIQUES OF PALEY-TYPE GRAPHS OVER FINITE COMMUTATIVE LOCAL RINGS

被引:0
作者
Gallo, Andrea L. [1 ]
Videla, Denis E. [1 ]
机构
[1] Univ Nacl, CONICET, FAMAF, CIEM, Cordoba, Argentina
关键词
local rings; generalized Paley graphs; cliques;
D O I
10.7151/dmgt.2538
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, given (R, m) a finite commutative local ring with identity and k E N with (k, |R|) = 1, we study the number of cliques of any size in the Cayley graph GR(k) = Cay(R, UR(k)) with UR(k) = {xk : x E R*}. Using the known fact that the graph GR(k) can be obtained by blowing -up the vertices of GFq (k) a number |m| of times, we reduce the study of the number of cliques in GR(k) over the local ring R to the computation of the number of cliques of GR/m(k) over the finite residue field R/m 'Fq. In this way, using known numbers of B -cliques of generalized Paley graphs (k = 2, 3, 4 and B = 3, 4), we obtain several explicit results for the number of B -cliques over finite commutative local rings with identity.
引用
收藏
页码:431 / 449
页数:19
相关论文
共 27 条
[1]  
Akhtar R, 2009, ELECTRON J COMB, V16
[2]   Cubic and quadruple Paley graphs with the n-e.c. property [J].
Ananchuen, W. ;
Caccetta, L. .
DISCRETE MATHEMATICS, 2006, 306 (22) :2954-2961
[3]  
Ananchuen W., 2001, AUSTRALAS J COMBIN, V24, P129
[4]  
Atanasov R., 2014, ACTA U APULENSIS MAT, V40, P51, DOI DOI 10.17114/J.AUA.2014.40.05
[5]  
Bhowmik A., 2023, ARXIV
[6]  
Bhowmik A, 2022, GRAPH COMBINATOR, V38, DOI 10.1007/s00373-021-02426-2
[7]  
Cox D. A., 1989, Primes of the Form x2 + ny2
[8]  
Das A, 2019, ALGEBRA DISCRET MATH, V28, P44
[9]   Generalized Paley graphs and their complete subgraphs of orders three and four [J].
Dawsey, Madeline Locus ;
McCarthy, Dermot .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (02)
[10]  
de Beaudrap N, 2010, ELECTRON J COMB, V17