On the well-posedness via the JKO approach and a study of blow-up of solutions for a multispecies Keller-Segel chemotaxis system with no mass conservation

被引:0
作者
Valencia-Guevara, Julio C. [1 ,2 ]
Perez, John [3 ]
Abreu, Eduardo [4 ]
机构
[1] Univ Nacl San Agustin Arequipa, Dept Acad Matemat, Arequipa, Arequipa, Peru
[2] Peru Univ Catol San Pablo, Arequipa, Peru
[3] Inst Tecnol Metropolitano, Dept Acad Matemat, Antioquia, Colombia
[4] Univ Estadual Campinas, UNICAMP SP, Dept Matemat Aplicada, Campinas, SP, Brazil
关键词
Blow-up Keller-Segel; Multispecies chemotaxis; JKO scheme Optimal transport; Wasserstein gradient flows; Multistep discretization; Numerical simulations; INFINITE-TIME AGGREGATION; GRADIENT FLOW; VARIATIONAL PRINCIPLE; PATTERN-FORMATION; MODEL; EQUATIONS; DIFFUSION; DYNAMICS;
D O I
10.1016/j.jmaa.2023.127602
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we consider a multispecies chemotaxis system that includes birth or death rate terms, which means that there is no mass conservation of the populations. First, in the spirit of [52] and [18], we demonstrate the convergence of the JKO scheme (derived from the Optimal Transport theory) to an L infinity-weak solution that is local in time. Recently, L infinity solutions have shown to be important to obtaining uniqueness results. Since the death rate case does not ensure the existence of global L infinity solutions for arbitrary initial data, we establish sufficient conditions that lead to the finite-time blow-up phenomenon and describe several stages at which this occurs. This part can be seen as a partial generalization of the blow-up results reported in [22]. Finally, we conduct some numerical simulations that explore solutions for initial data types not covered in the main convergence result.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 60 条
[1]   A fast, robust, and simple Lagrangian-Eulerian solver for balance laws and applications [J].
Abreu, Eduardo ;
Perez, John .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (09) :2310-2336
[2]  
Ambrosio L, 2008, LECT MATH, P1
[3]   Keller-Segel Chemotaxis Models: A Review [J].
Arumugam, Gurusamy ;
Tyagi, Jagmohan .
ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
[4]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[5]   The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane [J].
Biler, Piotr ;
Karch, Grzegorz ;
Laurencot, Philippe ;
Nadzieja, Tadeusz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (13) :1563-1583
[6]  
Blanchet A., 2013, RIMS KOKYUROKUS LECT, V1837, P52
[7]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
[8]   A HYBRID VARIATIONAL PRINCIPLE FOR THE KELLER-SEGEL SYSTEM IN R2 [J].
Blanchet, Adrien ;
Carrillo, Jose Antonio ;
Kinderlehrer, David ;
Kowalczyk, Michal ;
Laurencot, Philippe ;
Lisini, Stefano .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06) :1553-1576
[9]   The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in Rd, d ≥ 3 [J].
Blanchet, Adrien ;
Laurencot, Philippe .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (04) :658-686
[10]   Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model [J].
Blanchet, Adrien ;
Carlen, Eric A. ;
Carrillo, Jose A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) :2142-2230