Structural Characterization and Physicochemical Properties of Functionally Porous Proton-Exchange Membrane Based on PVDF-SPA Graft Copolymers

被引:6
作者
Ponomar, Maria [1 ]
Ruleva, Valentina [1 ]
Sarapulova, Veronika [1 ]
Pismenskaya, Natalia [1 ]
Nikonenko, Victor [1 ,2 ]
Maryasevskaya, Alina [2 ,3 ]
Anokhin, Denis [2 ,3 ,4 ]
Ivanov, Dimitri [2 ,3 ,4 ,5 ]
Sharma, Jeet [6 ,7 ,8 ]
Kulshrestha, Vaibhav [7 ,8 ]
Ameduri, Bruno [2 ,6 ]
机构
[1] Kuban State Univ, Dept Phys Chem, Krasnodar 350040, Russia
[2] Lomonosov Moscow State Univ, Fac Fundamental Phys & Chem Engn, Moscow 119991, Russia
[3] Russian Acad Sci, Fed Res Ctr Problems Chem Phys & Med Chem, Chernogolovka 142432, Russia
[4] Sirius Univ Sci & Technol, Ctr Genet & Life Sci, Soci 354340, Russia
[5] Inst Sci Mat Mulhouse, IS2M, CNRS UMR 7361, F-68057 Mulhouse, France
[6] Univ Montpellier, Ecole Natl Super Chim Montpellier, Inst Charles Gerhardt, CNRS, F-34000 Montpellier, France
[7] CSIR, Cent Salt & Marine Chem Res Inst CSIR CSMCRI, Membrane Sci & Separat Technol Div, Bhavnagar 364002, India
[8] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
conductivity; diffusion permeability; energy production and storage; ion transport; proton-exchange membranes; fuel cell; graft copolymer; electrochemical characterization; porous structure; POLYMER ELECTROLYTE MEMBRANE; ION-SELECTIVE MEMBRANES; POLY(VINYLIDENE FLUORIDE); COMPOSITE MEMBRANES; TRANSPORT-PROPERTIES; HIGH-TEMPERATURE; SALT-SOLUTIONS; WATER-UPTAKE; FUEL-CELLS; CONDUCTIVITY;
D O I
10.3390/ijms25010598
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5-6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 omega cm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion (R)) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes.
引用
收藏
页数:23
相关论文
共 114 条
[1]   An overview of proton exchange membranes for fuel cells: Materials and manufacturing [J].
Ahmad, Shahbaz ;
Nawaz, Tahir ;
Ali, Asghar ;
Orhan, Mehmet Fatih ;
Samreen, Ayesha ;
Kannan, Arunachala M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (44) :19086-19131
[2]   Effect of the resin content in cation-exchange membranes on development of electroconvection [J].
Akberova, E. M. ;
Vasil'eva, V., I .
ELECTROCHEMISTRY COMMUNICATIONS, 2020, 111
[3]  
Apel P.Y., 2013, ENCY MEMBRANE SCI TE, P332
[4]   Creation of Ion-Selective Membranes from Polyethylene Terephthalate Films Irradiated with Heavy Ions: Critical Parameters of the Process [J].
Apel, P. Yu ;
Blonskaya, I., V ;
Ivanov, O. M. ;
Kristavchuk, O., V ;
Lizunov, N. E. ;
Nechaev, A. N. ;
Orelovich, O. L. ;
Polezhaeva, O. A. ;
Dmitriev, S. N. .
MEMBRANES AND MEMBRANE TECHNOLOGIES, 2020, 2 (02) :98-108
[5]   Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells [J].
Bae, Insung ;
Oh, Keun-Hwan ;
Yun, Sung-Hyun ;
Kim, Hyuk .
JOURNAL OF MEMBRANE SCIENCE, 2017, 542 :52-59
[6]   Surface Structure of Nafion in Vapor and Liquid [J].
Bass, Maria ;
Berman, Amir ;
Singh, Amarjeet ;
Konovalov, Oleg ;
Freger, Viatcheslav .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (11) :3784-3790
[7]   Characterization of ion-exchange membrane materials: Properties vs structure [J].
Berezina, N. P. ;
Kononenko, N. A. ;
Dyomina, O. A. ;
Gnusin, N. P. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2008, 139 (1-2) :3-28
[8]   Electrotransport properties and morphology of MF-4SK membranes after surface modification with polyaniline [J].
Berezina, N. P. ;
Kononenko, N. A. ;
Filippov, A. N. ;
Shkirskaya, S. A. ;
Falina, I. V. ;
Sycheva, A. A. -R. .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2010, 46 (05) :485-493
[9]   Effect of conditioning techniques of perfluorinated sulphocationic membranes on their hydrophylic and electrotransport properties [J].
Berezina, NP ;
Timofeev, SV ;
Kononenko, NA .
JOURNAL OF MEMBRANE SCIENCE, 2002, 209 (02) :509-518
[10]   Evaluation of the Effect of Electroosmosis on the Efficiency of Electrobaromembrane Separation with Track-Etched Membranes [J].
Butylskii, D. Yu. ;
Mareev, S. A. ;
Ryzhkov, I. I. ;
Urtenov, M. Kh. ;
Apel, P. Yu. ;
Nikonenko, V. V. .
MEMBRANES AND MEMBRANE TECHNOLOGIES, 2023, 5 (05) :370-377