Hydrodynamics of a multicomponent vesicle under strong confinement

被引:0
作者
Gannon, Ashley [1 ]
Quaife, Bryan [1 ]
Young, Y. -N. [2 ]
机构
[1] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
SIMULATIONS; MEMBRANES; PRESSURE; DYNAMICS;
D O I
10.1039/d3sm01087b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We numerically investigate the hydrodynamics and membrane dynamics of a multicomponent vesicle in two strongly confined geometries. This serves as a simplified model for red blood cells undergoing large deformations while traversing narrow constrictions. We propose a new parameterization for the bending modulus that remains positive for all lipid phase parameter values. For a multicomponent vesicle passing through a stenosis, we establish connections between various properties: lipid phase coarsening, size and flow profile of the lubrication layers, excess pressure, and the tank-treading velocity of the membrane. For a multicomponent vesicle passing through a contracting channel, we find that the lipid always phase separates so that the vesicle is stiffer in the front as it passes through the constriction. For both cases of confinement we find that lipid coarsening is arrested under strong confinement, and resumes at a high rate upon relief from extreme confinement. The results may be useful for efficient sorting lipid domains using microfluidic flows by controlled release of vesicles passing through strong confinement. Numerically exploring a vesicle passing through two highly confined channels, we analyze the shape, lubrication layer, energy, tank-treading velocity, and excess pressure of a multicomponent vesicle.
引用
收藏
页码:599 / 608
页数:10
相关论文
共 43 条
[1]   Dynamics and rheology of a single two-dimensional multilobe vesicle in a confined geometry [J].
Abbasi, Mehdi ;
Farutin, Alexander ;
Nait-Ouhra, Abdessamad ;
Ez-Zahraouy, Hamid ;
Benyoussef, Abdelilah ;
Misbah, Chaouqi .
PHYSICAL REVIEW FLUIDS, 2022, 7 (09)
[2]   Fluid vesicles in flow [J].
Abreu, David ;
Levant, Michael ;
Steinberg, Victor ;
Seifert, Udo .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2014, 208 :129-141
[3]   Stable shapes of three-dimensional vesicles in unconfined and confined Poiseuille flow [J].
Agarwal, Dhwanit ;
Biros, George .
PHYSICAL REVIEW FLUIDS, 2020, 5 (01)
[4]   Budding and fission of a multiphase vesicle [J].
Allain, J. -M. ;
Ben Amar, M. .
EUROPEAN PHYSICAL JOURNAL E, 2006, 20 (04) :409-420
[5]   Phase behavior of multicomponent membranes: Experimental and computational techniques [J].
Bagatolli, Luis ;
Kumar, P. B. Sunil .
SOFT MATTER, 2009, 5 (17) :3234-3248
[6]  
Barakat J. M., 2017, J FLUID MECH, V835, P721, DOI [DOI 10.1017/JFM.2017.743, DOI 10.1017/jfm.2017.743, 10.1017/jfm.2017.743]
[7]   Shape transition and hydrodynamics of vesicles in tube flow [J].
Chen, Paul G. ;
Lyu, J. M. ;
Jaeger, M. ;
Leonetti, M. .
PHYSICAL REVIEW FLUIDS, 2020, 5 (04)
[8]   The effect of spontaneous curvature on a two-phase vesicle [J].
Cox, Geoffrey ;
Lowengrub, John .
NONLINEARITY, 2015, 28 (03) :773-793
[9]   Vesicles in Poiseuille Flow [J].
Danker, Gerrit ;
Vlahovska, Petia M. ;
Misbah, Chaouqi .
PHYSICAL REVIEW LETTERS, 2009, 102 (14)
[10]   Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles** [J].
Dreher, Yannik ;
Jahnke, Kevin ;
Bobkova, Elizaveta ;
Spatz, Joachim P. ;
Goepfrich, Kerstin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (19) :10661-10669