End to end stroke triage using cerebrovascular morphology and machine learning

被引:0
作者
Deshpande, Aditi [1 ,2 ]
Elliott, Jordan [1 ]
Jiang, Bin [3 ]
Tahsili-Fahadan, Pouya [4 ,5 ]
Kidwell, Chelsea [6 ]
Wintermark, Max [7 ]
Laksari, Kaveh [1 ,2 ,8 ]
机构
[1] Univ Arizona, Dept Biomed Engn, Tucson, AZ 85721 USA
[2] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[3] Stanford Univ, Dept Radiol, Stanford, CA USA
[4] Univ Virginia, Dept Med Educ, Inova Campus, Falls Church, VA USA
[5] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD USA
[6] Univ Arizona, Dept Neurol, Tucson, AZ USA
[7] Univ Texas MD Anderson Ctr, Dept Neuroradiol, Houston, TX USA
[8] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
来源
FRONTIERS IN NEUROLOGY | 2023年 / 14卷
基金
美国国家卫生研究院;
关键词
stroke; CNN-convolutional neural network; stroke outcome; collateral circulation; segmentation (image processing); machine learning; cerebrovascular disease; ACUTE ISCHEMIC-STROKE; ENDOVASCULAR THROMBECTOMY; BLOOD-VESSELS; OUTCOMES; TORTUOSITY; THERAPY; SCORE; TIME;
D O I
10.3389/fneur.2023.1217796
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundRapid and accurate triage of acute ischemic stroke (AIS) is essential for early revascularization and improved patient outcomes. Response to acute reperfusion therapies varies significantly based on patient-specific cerebrovascular anatomy that governs cerebral blood flow. We present an end-to-end machine learning approach for automatic stroke triage.MethodsEmploying a validated convolutional neural network (CNN) segmentation model for image processing, we extract each patient's cerebrovasculature and its morphological features from baseline non-invasive angiography scans. These features are used to detect occlusion's presence and the site automatically, and for the first time, to estimate collateral circulation without manual intervention. We then use the extracted cerebrovascular features along with commonly used clinical and imaging parameters to predict the 90 days functional outcome for each patient.ResultsThe CNN model achieved a segmentation accuracy of 94% based on the Dice similarity coefficient (DSC). The automatic stroke detection algorithm had a sensitivity and specificity of 92% and 94%, respectively. The models for occlusion site detection and automatic collateral grading reached 96% and 87.2% accuracy, respectively. Incorporating the automatically extracted cerebrovascular features significantly improved the 90 days outcome prediction accuracy from 0.63 to 0.83.ConclusionThe fast, automatic, and comprehensive model presented here can improve stroke diagnosis, aid collateral assessment, and enhance prognostication for treatment decisions, using cerebrovascular morphology.
引用
收藏
页数:12
相关论文
共 56 条
[11]   The effects of healthy aging on intracerebral blood vessels visualized by magnetic resonance angiography [J].
Bullitt, Elizabeth ;
Zeng, Donglin ;
Mortamet, Benedicte ;
Ghosh, Arpita ;
Aylward, Stephen R. ;
Lin, Weili ;
Marks, Bonita L. ;
Smith, Keith .
NEUROBIOLOGY OF AGING, 2010, 31 (02) :290-300
[12]   Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection [J].
Campbell, B. C. V. ;
Mitchell, P. J. ;
Kleinig, T. J. ;
Dewey, H. M. ;
Churilov, L. ;
Yassi, N. ;
Yan, B. ;
Dowling, R. J. ;
Parsons, M. W. ;
Oxley, T. J. ;
Wu, T. Y. ;
Brooks, M. ;
Simpson, M. A. ;
Miteff, F. ;
Levi, C. R. ;
Krause, M. ;
Harrington, T. J. ;
Faulder, K. C. ;
Steinfort, B. S. ;
Priglinger, M. ;
Ang, T. ;
Scroop, R. ;
Barber, P. A. ;
McGuinness, B. ;
Wijeratne, T. ;
Phan, T. G. ;
Chong, W. ;
Chandra, R. V. ;
Bladin, C. F. ;
Badve, M. ;
Rice, H. ;
de Villiers, L. ;
Ma, H. ;
Desmond, P. M. ;
Donnan, G. A. ;
Davis, S. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (11) :1009-1018
[13]   Novel imaging markers for altered cerebrovascular morphology in aging, stroke, and Alzheimer's disease [J].
Deshpande, Aditi ;
Elliott, Jordan ;
Kari, Nitya ;
Jiang, Bin ;
Michel, Patrik ;
Toosizadeh, Nima ;
Fahadan, Pouya Tahsili ;
Kidwell, Chelsea ;
Wintermark, Max ;
Laksari, Kaveh .
JOURNAL OF NEUROIMAGING, 2022, 32 (05) :956-967
[14]   Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature [J].
Deshpande, Aditi ;
Jamilpour, Nima ;
Jiang, Bin ;
Michel, Patrik ;
Eskandari, Ashraf ;
Kidwell, Chelsea ;
Wintermark, Max ;
Laksari, Kaveh .
NEUROIMAGE-CLINICAL, 2021, 30
[15]   Improving Cerebral Blood Flow after Arterial Recanalization: A Novel Therapeutic Strategy in Stroke [J].
El Amki, Mohamad ;
Wegener, Susanne .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (12)
[16]   Challenges of Outcome Prediction for Acute Stroke Treatment Decisions [J].
Goyal, Mayank ;
Ospel, Johanna Maria ;
Kappelhof, Manon ;
Ganesh, Aravind .
STROKE, 2021, 52 (05) :1921-1928
[17]   Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials [J].
Goyal, Mayank ;
Menon, Bijoy K. ;
van Zwam, Wim H. ;
Dippel, Diederik W. J. ;
Mitchell, Peter J. ;
Demchuk, Andrew M. ;
Davalos, Antoni ;
Majoie, Charles B. L. M. ;
van der Lugt, Aad ;
de Miquel, Maria A. ;
Donnan, Geoff Rey A. ;
Roos, Yvo B. W. E. M. ;
Bonafe, Alain ;
Jahan, Reza ;
Diener, Hans-Christoph ;
van den Berg, Lucie A. ;
Levy, Elad I. ;
Berkhemer, Olvert A. ;
Pereira, Vitor M. ;
Rempel, Jeremy ;
Millan, Monica ;
Davis, Stephen M. ;
Roy, Daniel ;
Thornton, John ;
San Roman, Luis ;
Ribo, Marc ;
Beumer, Debbie ;
Stouch, Bruce ;
Brown, Scott ;
Campbell, Bruce C. V. ;
van Oostenbrugge, Robert J. ;
Saver, Jeff Rey L. ;
Hill, Michael D. ;
Jovin, Tudor G. .
LANCET, 2016, 387 (10029) :1723-1731
[18]   Collateral Automation for Triage in Stroke: Evaluating Automated Scoring of Collaterals in Acute Stroke on Computed Tomography Scans [J].
Grunwald, Iris Q. ;
Kulikovski, Johann ;
Reith, Wolfgang ;
Gerry, Stephen ;
Namias, Rafael ;
Politi, Maria ;
Papanagiotou, Panagiotis ;
Essig, Marco ;
Mathur, Shrey ;
Joly, Olivier ;
Hussain, Khawar ;
Wagner, Viola ;
Shah, Sweni ;
Harston, George ;
Vlahovic, Julija ;
Walter, Silke ;
Podlasek, Anna ;
Fassbender, Klaus .
CEREBROVASCULAR DISEASES, 2019, 47 (5-6) :217-222
[19]   Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine [J].
Guberina, Nika ;
Dietrich, U. ;
Radbruch, A. ;
Goebel, J. ;
Deuschl, C. ;
Ringelstein, A. ;
Koehrmann, M. ;
Kleinschnitz, C. ;
Forsting, M. ;
Moenninghoff, C. .
NEURORADIOLOGY, 2018, 60 (09) :889-901
[20]   Brain Arterial Diameters as a Risk Factor for Vascular Events [J].
Gutierrez, Jose ;
Cheung, Ken ;
Bagci, Ahmet ;
Rundek, Tatjana ;
Alperin, Noam ;
Sacco, Ralph L. ;
Wright, Clinton B. ;
Elkind, Mitchell S. V. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2015, 4 (08) :e002289