Multi-Target Tracking Using a Swarm of UAVs by Q-learning Algorithm

被引:0
作者
Soleymani, Seyed Ahmad [1 ]
Goudarzi, Shidrokh [2 ]
Liu, Xingchi [3 ]
Mihaylova, Lyudmila [3 ]
Wang, Wenwu [1 ]
Xiao, Pei [4 ]
机构
[1] Univ Surrey, Ctr Vis Speech & Signal Proc CVSSP, Guildford, Surrey, England
[2] Univ West London, Sch Comp & Engn, London, England
[3] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[4] Univ Surrey, Inst Commun Syst 5GIC, Guildford, Surrey, England
来源
2023 SENSOR SIGNAL PROCESSING FOR DEFENCE CONFERENCE, SSPD | 2023年
关键词
Multi-target tracking; UAV; Q-Learning; Edge Computing;
D O I
10.1109/SSPD57945.2023.10256967
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a scheme for multiple un-manned aerial vehicles (UAVs) to track multiple targets in challenging 3-D environments while avoiding obstacle collisions. The scheme relies on Received-Signal-Strength-Indicator (RSSI) measurements to estimate and track target positions and uses a Q-Learning (QL) algorithm to enhance the intelligence of UAVs for autonomous navigation and obstacle avoidance. Considering the limitation of UAVs in their power and computing capacity, a global reward function is used to determine the optimal actions for the joint control of energy consumption, computation time, and tracking accuracy. Extensive simulations demonstrate the effectiveness of the proposed scheme, achieving accurate and efficient target tracking with low energy consumption.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 15 条
[1]   Visual-Inertial Image-Odometry Network (VIIONet): A Gaussian process regression-based deep architecture proposal for UAV pose estimation [J].
Aslan, Muhammet Fatih ;
Durdu, Akif ;
Sabanci, Kadir .
MEASUREMENT, 2022, 194
[2]  
Bhagat S, 2020, INT CONF UNMAN AIRCR, P694, DOI [10.1109/ICUAS48674.2020.9213856, 10.1109/icuas48674.2020.9213856]
[3]   Autonomous Tracking Using a Swarm of UAVs: A Constrained Multi-Agent Reinforcement Learning Approach [J].
Chen, Yu-Jia ;
Chang, Deng-Kai ;
Zhang, Cheng .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) :13702-13717
[4]   Energy-Efficient UAV-Aided Target Tracking Systems Based on Edge Computing [J].
Deng, Xiaoheng ;
Li, Jun ;
Guan, Peiyuan ;
Zhang, Lan .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03) :2207-2214
[5]  
Goudarzi S., 2023, IEEE T AERO ELEC SYS
[6]   Real-Time and Intelligent Flood Forecasting Using UAV-Assisted Wireless Sensor Network [J].
Goudarzi, Shidrokh ;
Soleymani, Seyed Ahmad ;
Anisi, Mohammad Hossein ;
Ciuonzo, Domenico ;
Kama, Nazri ;
Abdullah, Salwani ;
Azgomi, Mohammad Abdollahi ;
Chaczko, Zenon ;
Azmi, Azri .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01) :715-738
[7]   Dynamic Resource Allocation Model for Distribution Operations Using SDN [J].
Goudarzi, Shidrokh ;
Anisi, Mohammad Hossein ;
Ahmadi, Hamed ;
Musavian, Leila .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (02) :976-988
[8]  
Lin Wang, 2010, 2010 8th IEEE International Conference on Control and Automation (ICCA 2010), P273, DOI 10.1109/ICCA.2010.5524326
[9]   Unmanned Aerial Vehicle With Underlaid Device-to-Device Communications: Performance and Tradeoffs [J].
Mozaffari, Mohammad ;
Saad, Walid ;
Bennis, Mehdi ;
Debbah, Merouane .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (06) :3949-3963
[10]  
Papaioannou S, 2020, INT CONF UNMAN AIRCR, P1475, DOI [10.1109/icuas48674.2020.9213937, 10.1109/ICUAS48674.2020.9213937]