Direct comparison of multiple computer-aided polyp detection systems

被引:18
作者
Troya, Joel [1 ,2 ,6 ]
Sudarevic, Boban [1 ,3 ]
Krenzer, Adrian [4 ]
Banck, Michael [4 ]
Brand, Markus [1 ]
Walter, Benjamin M. [5 ]
Puppe, Frank [4 ]
Zoller, Wolfram G. [3 ]
Meining, Alexander [1 ,2 ]
Hann, Alexander [1 ]
机构
[1] Univ Hosp Wurzburg, Dept Internal Med 2, Intervent & Expt Endoscopy InExEn, Wurzburg, Germany
[2] Bavarian Canc Res Ctr, Wurzburg, Germany
[3] Katharinenhospital, Dept Internal Med & Gastroenterol, Stuttgart, Germany
[4] Julius Maximilians Univ Wurzburg, Inst Comp Sci, Artificial Intelligence & Knowledge Syst, Wurzburg, Germany
[5] Univ Hosp Ulm, Dept Internal Med 1, Ulm, Germany
[6] Univ Klinikum Wurzburg, Med Klin & Poliklin 2, Oberdurrbacher Str 6, D-97080 Wurzburg, Germany
关键词
ADENOMA DETECTION; MISS RATE; COLONOSCOPY;
D O I
10.1055/a-2147-0571
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and study aims Artificial intelligence (AI) based systems for computer-aided detection (CADe) of polyps receive regular updates and occasionally offer customizable detection thresholds, both of which impact their performance, but little is known about these effects. This study aimed to compare the performance of different CADe systems on the same benchmark dataset.Methods 101 colonoscopy videos were used as bench-mark. Each video frame with a visible polyp was manually annotated with bounding boxes, resulting in 129705 polyp images. The videos were then analyzed by three different CADe systems, representing five conditions: two versions of GI Genius, Endo-AID with detection Types A and B, and EndoMind, a freely available system. Evaluation included an analysis of sensitivity and false-positive rate, among other metrics.Results Endo-AID detection Type A, the earlier version of GI Genius, and EndoMind detected all 93 polyps. Both the later version of GI Genius and Endo-AID Type B missed 1 polyp. The mean per-frame sensitivities were 50.63 % and 67.85 %, respectively, for the earlier and later versions of GI Genius, 65.60% and 52.95%, respectively, for Endo-AID Types A and B, and 60.22 % for EndoMind.Conclusions This study compares the performance of dif-ferent CADe systems, different updates, and different con-figuration modes. This might help clinicians to select the most appropriate system for their specific needs.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 23 条
[1]  
[Anonymous], 2019, AWMF Registrierungsnummer: 021/007OL
[2]   Frame-by-Frame Analysis of a Commercially Available Artificial Intelligence Polyp Detection System in Full-Length Colonoscopies [J].
Brand, Markus ;
Troya, Joel ;
Krenzer, Adrian ;
De Maria, Costanza ;
Mehlhase, Niklas ;
Goetze, Sebastian ;
Walter, Benjamin ;
Meining, Alexander ;
Hann, Alexander .
DIGESTION, 2022, 103 (05) :378-385
[3]   Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions [J].
Brand, Markus ;
Troya, Joel ;
Krenzer, Adrian ;
Sassmannshausen, Zita ;
Zoller, Wolfram G. ;
Meining, Alexander ;
Lux, Thomas J. ;
Hann, Alexander .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2022, 10 (05) :477-484
[4]   A video based benchmark data set (ENDOTEST) to evaluate computer-aided polyp detection systems [J].
Fitting, Daniel ;
Krenzer, Adrian ;
Troya, Joel ;
Banck, Michael ;
Sudarevic, Boban ;
Brand, Markus ;
Boeck, Wolfgang ;
Zoller, Wolfram G. ;
Roesch, Thomas ;
Puppe, Frank ;
Meining, Alexander ;
Hann, Alexander .
SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, 2022, 57 (11) :1397-1403
[5]   Usefulness of a novel computer-aided detection system for colorectal neoplasia: a randomized controlled trial [J].
Gimeno-Garcia, Antonio Z. ;
Negrin, Domingo Hernandez ;
Hernandez, Anjara ;
Nicolas-Perez, David ;
Rodriguez, Eduardo ;
Montesdeoca, Carlota ;
Alarcon, Onofre ;
Romero, Rafael ;
Dorta, Jose Luis Baute ;
Cedres, Yaiza ;
del Castillo, Rocio ;
Jimenez, Alejandro ;
Felipe, Vanessa ;
Morales, Dalia ;
Ortega, Juan ;
Reygosa, Cristina ;
Quintero, Enrique ;
Hernandez-Guerra, Manuel .
GASTROINTESTINAL ENDOSCOPY, 2023, 97 (03) :528-+
[6]   Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study [J].
Gong, Dexin ;
Wu, Lianlian ;
Zhang, Jun ;
Mu, Ganggang ;
Shen, Lei ;
Liu, Jun ;
Wang, Zhengqiang ;
Zhou, Wei ;
An, Ping ;
Huang, Xu ;
Jiang, Xiaoda ;
Li, Yanxia ;
Wan, Xinyue ;
Hu, Shan ;
Chen, Yiyun ;
Hu, Xiao ;
Xu, Youming ;
Zhu, Xiaoyun ;
Li, Suqin ;
Yao, Liwen ;
He, Xinqi ;
Chen, Di ;
Huang, Li ;
Wei, Xiao ;
Wang, Xuemei ;
Yu, Honggang .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (04) :352-361
[7]   Recommendations for Follow-Up After Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer [J].
Gupta, Samir ;
Lieberman, David ;
Anderson, Joseph C. ;
Burke, Carol A. ;
Dominitz, Jason A. ;
Kaltenbach, Tonya ;
Robertson, Douglas J. ;
Shaukat, Aasma ;
Syngal, Sapna ;
Rex, Douglas K. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (03) :463-+
[8]   Miss rate for colorectal neoplastic polyps:: a prospective multicenter study of back-to-back video colonoscopies [J].
Heresbach, D. ;
Barrioz, T. ;
Lapalus, M. G. ;
Coumaros, D. ;
Bauret, P. ;
Potier, P. ;
Sautereau, D. ;
Boustiere, C. ;
Grimaud, J. C. ;
Barthelemy, C. ;
See, J. ;
Serraj, I. ;
Halluin, P. N. D. ;
Branger, B. ;
Ponchan, T. .
ENDOSCOPY, 2008, 40 (04) :284-290
[9]   Current Status and Future Perspectives of Artificial Intelligence in Colonoscopy [J].
Kamitani, Yu ;
Nonaka, Kouichi ;
Isomoto, Hajime .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (10)
[10]   Semi-Automated Machine Learning Video Annotation for Gastroenterologists [J].
Krenzer, Adrian ;
Makowski, Kevin ;
Hekalo, Amar ;
Puppe, Frank .
PUBLIC HEALTH AND INFORMATICS, PROCEEDINGS OF MIE 2021, 2021, 281 :484-485