Solvent Engineering of Hole-Transport Layer for Improved Efficiency and Stability in Perovskite Solar Cells

被引:0
作者
Mutlu, Adem [1 ]
Turgut, Sevdiye Basak [1 ]
Ekici, Alper [1 ]
Gultekin, Burak [1 ]
Zafer, Ceylan [1 ]
机构
[1] Ege Univ, Solar Energy Inst, TR-35100 Izmir, Turkiye
关键词
less-toxic solvents; hole-transport materials; nonradiative recombination; perovskites; stability; HALIDE PEROVSKITES; 4-TERT-BUTYLPYRIDINE; HYSTERESIS;
D O I
10.1002/adem.202301101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although perovskite solar cells (PSCs) are one of the fastest-growing photovoltaic technologies, many innovations are required to further improve performance and stability. The acetonitrile (ACN) solvent used to dissolve the Li-TFSI salt in Spiro-OMeTAD corrodes the perovskite thin film. In this study, 1-methoxy-2-propanol (1MEO) and 2-ethoxy-ethanol (2ETO) solvents are used by replacing ACN. The utilization of 1MEO results in improved hole mobility in Spiro-OMeTAD and reduction in defects at the perovskite/Spiro-OMeTAD interface, thus diminishing nonradiative recombination. The recombination resistances in the low-frequency range are determined via electrochemical impedance spectroscopy (EIS) and are found to be 3361.9 ohms for ACN-Spiro-OMeTAD, 4406.8 & omega; for 1MEO-Spiro-OMeTAD, and 3815.3 & omega; for 2MEO-Spiro-OMeTAD. These results indicate that the utilization of 1MEO and 2ETO instead of ACN effectively decreases charge recombination in PSCs. As a result, after replacing ACN with 1MEO and 2ETO, PSCs achieve a power conversion efficiency (PCE) of 21.3% and 20.0% respectively, while a PCE of 18.9% is obtained from the control device with ACN. During 45 d stability test, the initial efficiency of the control device decreases by 31.2%, while the 1MEO and 2ETO devices exhibit efficiency reductions of 12.2% and 7.7%, respectively. This study involves the replacement of acetonitrile (ACN) in Spiro-OMeTAD with 1-methoxy-2-propanol (1MEO) and 2-ethoxy-ethanol (2ETO). These solvents improve hole mobility in Spiro-OMeTAD, reducing defects at the perovskite/Spiro-OMeTAD interface and nonradiative recombination. This leads to higher device efficiencies of 21.3% and 20.0% for 1MEO and 2ETO, compared to ACN (18.9%). Modified devices demonstrate better stability during a 45 d test.image & COPY; 2023 WILEY-VCH GmbH
引用
收藏
页数:10
相关论文
共 55 条
[41]   Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering [J].
Shi, Dong ;
Qin, Xiang ;
Li, Yuan ;
He, Yao ;
Zhong, Cheng ;
Pan, Jun ;
Dong, Huanli ;
Xu, Wei ;
Li, Tao ;
Hu, Wenping ;
Bredas, Jean-Luc ;
Bakr, Osman M. .
SCIENCE ADVANCES, 2016, 2 (04)
[42]   Low-frequency carrier kinetics in triple cation perovskite solar cells probed by impedance and modulus spectroscopy [J].
Tailor, Naveen Kumar ;
Senanayak, Satyaprasad P. ;
Abdi-Jalebi, Mojtaba ;
Satapathi, Soumitra .
ELECTROCHIMICA ACTA, 2021, 386
[43]   A general approach to high-efficiency perovskite solar cells by any antisolvent [J].
Taylor, Alexander D. ;
Sun, Qing ;
Goetz, Katelyn P. ;
An, Qingzhi ;
Schramm, Tim ;
Hofstetter, Yvonne ;
Litterst, Maximillian ;
Paulus, Fabian ;
Vaynzof, Yana .
NATURE COMMUNICATIONS, 2021, 12 (01)
[44]   Double-Halide Composition-Engineered SnO2-Triple Cation Perovskite Solar Cells Demonstrating Outstanding Performance and Stability [J].
Tyagi, Barkha ;
Lee, Hock Beng ;
Kumar, Neetesh ;
Kang, Jae-Wook .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) :8595-8605
[45]   Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells [J].
Wang, Shen ;
Sina, Mahsa ;
Parikh, Pritesh ;
Uekert, Taylor ;
Shahbazian, Brian ;
Devaraj, Arun ;
Meng, Ying Shirley .
NANO LETTERS, 2016, 16 (09) :5594-5600
[46]   Dopant-Free Small-Molecule Hole-Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21% [J].
Wang, Yang ;
Chen, Wei ;
Wang, Lei ;
Tu, Bao ;
Chen, Tian ;
Liu, Bin ;
Yang, Kun ;
Koh, Chang Woo ;
Zhang, Xianhe ;
Sun, Huiliang ;
Chen, Guocong ;
Feng, Xiyuan ;
Woo, Han Young ;
Djurisic, Aleksandro B. ;
He, Zhubing ;
Guo, Xugang .
ADVANCED MATERIALS, 2019, 31 (35)
[47]   Basic understanding of perovskite solar cells and passivation mechanism [J].
Yu, Yixin ;
Xia, Jingxuan ;
Liang, Yiwen .
AIP ADVANCES, 2022, 12 (05)
[48]   Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis [J].
Zarazua, Isaac ;
Han, Guifang ;
Boix, Pablo P. ;
Mhaisalkar, Subodh ;
Fabregat-Santiago, Francisco ;
Mora-Sero, Ivan ;
Bisquert, Juan ;
Garcia-Belmonte, Germa .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (24) :5105-5113
[49]   4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability [J].
Zhang, Jinbao ;
Zhang, Tian ;
Jiang, Liangcong ;
Bach, Udo ;
Cheng, Yi-Bing .
ACS ENERGY LETTERS, 2018, 3 (07) :1677-1682
[50]   Single crystal structure and opto-electronic properties of oxidized Spiro-OMeTAD [J].
Zhang, Wei ;
Wang, Linqin ;
Guo, Yu ;
Zhang, Biaobiao ;
Leandri, Valentina ;
Xu, Bo ;
Li, Zhuofeng ;
Gardner, James M. ;
Sun, Licheng ;
Kloo, Lars .
CHEMICAL COMMUNICATIONS, 2020, 56 (10) :1589-1592