Salt tolerance and regulation of Na+, K+, and proline contents in different wild turfgrasses under salt stress

被引:4
|
作者
Tada, Yuichi [1 ]
Kochiya, Ryuto [1 ]
Toyoizumi, Masayuki [1 ]
Takano, Yuka [1 ]
机构
[1] Tokyo Univ Technol, Sch Biosci & Biotechnol, 1404-1 Katakura, Hachioji, Tokyo 1920982, Japan
关键词
K+; Na+'; proline; salt tolerance; turfgrass; RELATIVE SALINITY TOLERANCE; TRANSPORT; GROWTH; PLANTS;
D O I
10.5511/plantbiotechnology.23.0721a
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
STurfgrasses show a wide range of salinity tolerance. In this study, twenty wild turfgrasses were collected from coastal regions in Japan, and their species; evolutionary lineage; salt tolerance levels; shoot and root K+, Na+, and proline contents; and amounts of ions secreted from their salt glands were determined. Among them, eighteen turfgrass species were determined based on the internal transcribed spacer 1 sequences. All collected wild turfgrasses were identified as halophytes and were divided into two salt-tolerant levels. They maintained the shoot relative water contents and suppressed excess Na+ accumulation in their shoots and roots and K+ content homeostasis compared with rice, resulting in the maintenance of a higher K+/Na+ ratio under salt stress. These characteristics must be part of the salt tolerance mechanisms. Among the four turfgrasses with salt glands, three selectively secreted Na+ from their salt glands; however, interestingly, one secreted K+ over Na+, although it still maintained a K+/Na+ ratio comparable to that of the other turfgrasses. A significant amount of proline synthesis was observed in most of the turfgrasses in response to salt stress, and the proline content was highly correlated with the salt tolerance, suggesting its key role in the salt tolerance mechanisms. These wild turfgrasses with such diverse ion control mechanisms and proline synthesis profiles are useful materials for investigating the salt tolerant mechanisms and breeding salt tolerant turfgrasses.
引用
收藏
页码:301 / 309
页数:9
相关论文
共 50 条
  • [21] NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress
    Ma, Liya
    Zhang, Huan
    Sun, Lirong
    Jiao, Yiheng
    Zhang, Guozeng
    Miao, Chen
    Hao, Fushun
    JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (01) : 305 - 317
  • [22] Karrikinolide alleviates salt stress in wheat by regulating the redox and K+/Na+ homeostasis
    Shah, Faheem Afzal
    Ni, Jun
    Tang, Caiguo
    Chen, Xue
    Kan, Wenjie
    Wu, Lifang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 167 : 921 - 933
  • [23] Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation
    Ghars, Mohamed Ali
    Parre, Elodie
    Debez, Ahmed
    Bordenave, Marianne
    Richard, Luc
    Leport, Laurent
    Bouchereau, Alain
    Savoure, Arnould
    Abdelly, Chedly
    JOURNAL OF PLANT PHYSIOLOGY, 2008, 165 (06) : 588 - 599
  • [24] Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants
    Miranda, Rafael de Souza
    Alvarez-Pizarro, Juan Carlos
    Silva Araujo, Celso Marinones
    Prisco, Jose Tarquinio
    Gomes-Filho, Eneas
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (03) : 841 - 852
  • [25] Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter
    Wang, Zhen
    Hong, Yechun
    Zhu, Guangtao
    Li, Yumei
    Niu, Qingfeng
    Yao, Juanjuan
    Hua, Kai
    Bai, Jinjuan
    Zhu, Yingfang
    Shi, Huazhong
    Huang, Sanwen
    Zhu, Jian-Kang
    EMBO JOURNAL, 2020, 39 (10):
  • [26] Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance
    Sun, Jian
    Dai, Songxiang
    Wang, Ruigang
    Chen, Shaoliang
    Li, Niya
    Zhou, Xiaoyang
    Lu, Cunfu
    Shen, Xin
    Zheng, Xiaojiang
    Hu, Zanmin
    Zhang, Zengkai
    Song, Jin
    Xu, Yue
    TREE PHYSIOLOGY, 2009, 29 (09) : 1175 - 1186
  • [27] Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants
    Rafael de Souza Miranda
    Juan Carlos Alvarez-Pizarro
    Celso Marinones Silva Araújo
    José Tarquinio Prisco
    Enéas Gomes-Filho
    Acta Physiologiae Plantarum, 2013, 35 : 841 - 852
  • [28] NA+ FLUXES IN CHARA UNDER SALT STRESS
    WHITTINGTON, J
    BISSON, MA
    JOURNAL OF EXPERIMENTAL BOTANY, 1994, 45 (274) : 657 - 665
  • [29] Na+/K+-ATPase regulates the K+/Na+ homeostasis in the intertidal macroalgae, Neoporphyra haitanensis, in response to salt stress
    Chen, Qi
    Xu, Kai
    Xu, Yan
    Ji, Dehua
    Chen, Changsheng
    Xie, Chaotian
    Wang, Wenlei
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [30] Na+/K+ permeability at different salt growth regimes and Na+ and K+ uptake kinetics in the halophyte Halimione portulacoides (L.) Aellen
    Rubio, Lourdes
    Aithamou, Karima
    Elena, Beatriz
    Garcia-Sanchez, Maria J.
    Fernandez, Jose A.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2009, 153A (02): : S193 - S193