A Deep Learning Method for Computing Eigenvalues of the Fractional Schrodinger Operator

被引:1
作者
Guo Yixiao [1 ,2 ]
Ming Pingbing [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalue problem; deep learning; fractional Schrodinger operator; isospectral problem; NUMERICAL-METHODS; NEURAL-NETWORKS; SPECTRAL METHOD; LAPLACIAN; DOMAINS; DIFFUSION; EFFICIENT; DYNAMICS; SPHERES; SHAPE;
D O I
10.1007/s11424-024-3250-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors present a novel deep learning method for computing eigenvalues of the fractional Schrodinger operator. The proposed approach combines a newly developed loss function with an innovative neural network architecture that incorporates prior knowledge of the problem. These improvements enable the proposed method to handle both high-dimensional problems and problems posed on irregular bounded domains. The authors successfully compute up to the first 30 eigenvalues for various fractional Schrodinger operators. As an application, the authors share a conjecture to the fractional order isospectral problem that has not yet been studied.
引用
收藏
页码:391 / 412
页数:22
相关论文
共 46 条
[1]  
Ainsworth M., 2018, CONT COMPUTATIONAL M
[2]   Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver [J].
Ainsworth, Mark ;
Glusa, Christian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 :4-35
[3]   A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrodinger operator [J].
Bao, Weizhu ;
Chen, Lizhen ;
Jiang, Xiaoyun ;
Ma, Ying .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 421
[4]   FUNDAMENTAL GAPS OF THE FRACTIONAL SCHRODINGER OPERATOR [J].
Bao, Weizhu ;
Ruan, Xinran ;
Shen, Jie ;
Sheng, Changtao .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (02) :447-471
[5]   Numerical methods for fractional diffusion [J].
Bonito, Andrea ;
Borthagaray, Juan Pablo ;
Nochetto, Ricardo H. ;
Otarola, Enrique ;
Salgado, Abner J. .
COMPUTING AND VISUALIZATION IN SCIENCE, 2018, 19 (5-6) :19-46
[6]   Algebraic multigrid methods for solving generalized eigenvalue problems [J].
Borzì, A ;
Borzì, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (08) :1186-1196
[7]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[8]   Two-sided eigenvalue estimates for subordinate processes in domains [J].
Chen, ZQ ;
Song, RM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) :90-113
[9]   Fermionic neural-network states for ab-initio electronic structure [J].
Choo, Kenny ;
Mezzacapo, Antonio ;
Carleo, Giuseppe .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   NEURAL NETWORKS FOR COMPUTING EIGENVALUES AND EIGENVECTORS [J].
CICHOCKI, A ;
UNBEHAUEN, R .
BIOLOGICAL CYBERNETICS, 1992, 68 (02) :155-164