Computational studies on CuAAC reaction mechanism with [CuX(PPh3)]; X = I, Br, Cl for the synthesis of 4-and 5-halo-1,2,3-triazoles

被引:9
作者
Khairbek, Ali A. [1 ]
Alzahrani, Abdullah Y. [2 ]
Badawi, Mohammad Abd Al-Hakim [1 ]
Thomas, Renjith [3 ,4 ]
机构
[1] Tishreen Univ, Fac Sci, Dept Chem, Latakia, Syria
[2] King Khalid Univ, Fac Sci & Arts, Dept Chem, Mohail Assir, Saudi Arabia
[3] St Berchmans Coll Autonomous, Dept Chem, Changanassery 686101, Kerala, India
[4] St Berchmans Coll Autonomous, Ctr Theoret & Computat Chem, Changanassery 686101, Kerala, India
关键词
Azide; Halo-triazoles; Copper; Cycloaddition; Click Chemistry; AZIDE-ALKYNE CYCLOADDITION; N-HETEROCYCLIC CARBENE; TERMINAL ALKYNES; ORGANIC AZIDES; COPPER; COMPLEXES; 1,2,3-TRIAZOLES; LIGATION; LIGANDS;
D O I
10.1007/s11144-023-02548-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A complementary catalytic system was investigated for the [3 + 2] cycloaddition of azides and halo-alkynes. These are based on three copper complexes with [CuX (PPh3)]; X = I, Br, Cl, which are active at low metal loadings (the PPh3 system). The computational MN12-L approach showed acceptable results with levels of Def2-TZVPfor Cu and Def2-SVP for other elements. In general, all the computational results indicate that the cycloaddition reaction favors the formation of the observed 1,4-regioisomer (5-halo-triazoles) through a direct pi-activation mechanism.
引用
收藏
页码:777 / 790
页数:14
相关论文
共 50 条
[1]   Enhanced reactivity of dinuclear Copper(I) acetylides in dipolar cycloadditions [J].
Ahlquist, Marten ;
Fokin, Valery V. .
ORGANOMETALLICS, 2007, 26 (18) :4389-4391
[2]   DFT Studies on Mechanism of Organocatalytic Metal-Free Click 32CA Reaction for Synthesis of NH-1,2,3-triazoles [J].
Al-Hakim Badawi, Mohammad Abd ;
Al-Zaben, Maha I. ;
Thomas, Renjith .
CATALYSIS LETTERS, 2024, 154 (03) :1134-1141
[3]   An Overview of 4-and 5-Halo-1,2,3-triazoles from Cycloaddition Reactions [J].
Arenas, Jose Laxio ;
Crousse, Benoit .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2021, 2021 (18) :2665-2679
[4]   Computational studies of the CuAAC reaction mechanism with diimine and phosphorus ligands for the synthesis of 1,4-disubstituted 1,2,3-triazoles [J].
Badawi, Mohammad Abd Al-Hakim ;
Khairbek, Ali A. ;
Thomas, Renjith .
NEW JOURNAL OF CHEMISTRY, 2023, 47 (08) :3683-3691
[6]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[7]   Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model [J].
Bickelhaupt, F. Matthias ;
Houk, Kendall N. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (34) :10070-10086
[8]   Nanoporous Titania-Supported Gold Nanoparticle-Catalyzed Green Synthesis of 1,2,3-Triazoles in Aqueous Medium [J].
Boominathan, Muthusamy ;
Pugazhenthiran, Nalenthiran ;
Nagaraj, Muthupandi ;
Muthusubramanian, Shanmugam ;
Murugesan, Sepperumal ;
Bhuvanesh, Nattamai .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (11) :1405-1411
[9]   Ruthenium-catalyzed azide-alkyne cycloaddition: Scope and mechanism [J].
Boren, Brant C. ;
Narayan, Sridhar ;
Rasmussen, Lars K. ;
Zhang, Li ;
Zhao, Haitao ;
Lin, Zhenyang ;
Jia, Guochen ;
Fokin, Valery V. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (28) :8923-8930
[10]   Rationalizing the Catalytic Activity of Copper in the Cycloaddition of Azide and Alkynes (CuAAC) with the Topology of del2ρ(r) and deldel2ρ(r) [J].
Calvo-Losada, Saturnino ;
Soledad Pino-Gonzalez, Maria ;
Joaquin Quirante, Jose .
JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (04) :1243-1258