Auger-suppression in barrier-blocking HgCdTe long-wavelength infrared detector

被引:7
作者
He, Jiale [1 ]
Xu, Leijun
Tang, Weiwei
Zhang, Shi
机构
[1] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Coll Phys & Optoelect Engn, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Auger; -suppression; Long-wavelength infrared photodetectors; HgCdTe; Barrier-blocking devices; Band; -offset; Dark current; DESIGN;
D O I
10.1016/j.infrared.2023.104918
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Throughout, both the Auger-suppression effect and barrier-blocking devices have been regarded as highly promising solutions for achieving high- operation-temperature (HOT) in long-wave infrared (LWIR) HgCdTe devices. Herein, two structural designs of pBin-type barrier-blocking LWIR HgCdTe devices were introduced and analyzed, accompanied by an extensive investigation into the Auger-suppression effect within the designed structures. It was observed that this unique structural approach has the potential to enhance the operational temperature of HgCdTe barrier-blocking devices. A strong dependency of the Auger suppression effect on the doping concentration within the absorption region was revealed through the analysis of absorption region structural parameters. Furthermore, the analysis of band structures for different design configurations demonstrated that the structural design involving p-type barrier layers can effectively position the barrier at the conduction band, eliminating the reliance on valence band-offset with respect to barrier layer structural parameters. Consequently, the structural design and fabrication processes of the devices were significantly simplified. These discoveries offer theoretical guidance for the simplification of structural design and fabrication processes in HOT barrier-blocking HgCdTe devices, emphasizing the potential of pBin-type structures in enhancing device performance and achieving elevated operational temperatures.
引用
收藏
页数:5
相关论文
共 43 条
[1]   Delta Doping in HgCdTe-Based Unipolar Barrier Photodetectors [J].
Akhavan, Nima Dehdashti ;
Umana-Membreno, Gilberto Armando ;
Gu, Renjie ;
Antoszewski, Jarek ;
Faraone, Lorenzo .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (10) :4340-4345
[2]   A method of removing the valence band discontinuity in HgCdTe-based nBn detectors [J].
Akhayan, N. D. ;
Umana-Membreno, G. A. ;
Jolley, G. ;
Antoszewski, J. ;
Faraone, L. .
APPLIED PHYSICS LETTERS, 2014, 105 (12)
[3]   High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared [J].
Chen, Jin ;
Chen, Jian ;
Li, Xin ;
He, Jiale ;
Yang, Liao ;
Wang, Jian ;
Yu, Feilong ;
Zhao, Zengyue ;
Shen, Chuan ;
Guo, Huijun ;
Li, Guanhai ;
Chen, Xiaoshuang ;
Lu, Wei .
NPJ QUANTUM MATERIALS, 2021, 6 (01)
[4]  
Chu J.H., 2005, Physics of Narrow Band Semiconductor
[5]  
Hall R., 1959, Proc. IEE-Part B Electron. Commun. Eng, V106, P923, DOI DOI 10.1049/PI-B-2.1959.0171
[6]   Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode [J].
He, Jiale ;
Li, Qing ;
Wang, Peng ;
Wang, Fang ;
Gu, Yue ;
Shen, Chuan ;
Luo, Man ;
Yu, Chenhui ;
Chen, Lu ;
Chen, Xiaoshuang ;
Lu, Wei ;
Hu, Weida .
OPTICS EXPRESS, 2020, 28 (22) :33556-33563
[7]   Enhanced Performance of HgCdTe Long-Wavelength Infrared Photodetectors With nBn Design [J].
He, Jiale ;
Wang, Peng ;
Li, Qing ;
Wang, Fang ;
Gu, Yue ;
Shen, Chuan ;
Chen, Lu ;
Martyniuk, Piotr ;
Rogalski, Antoni ;
Chen, Xiaoshuang ;
Lu, Wei ;
Hu, Weida .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (05) :2001-2007
[8]   MBE HgCdTe on si and GaAs substrates [J].
He, L. ;
Chen, L. ;
Wu, Y. ;
Fu, X. L. ;
Wang, Y. Z. ;
Wu, J. ;
Yu, M. F. ;
Yang, J. R. ;
Ding, R. J. ;
Hu, X. N. ;
Li, Y. J. ;
Zhang, Q. Y. .
JOURNAL OF CRYSTAL GROWTH, 2007, 301 :268-272
[9]  
Hu W.D, 2017, Handbook of Optoelectronic Device Modelling and Simuation, P307
[10]   Recent progress on advanced infrared photodetectors [J].
Hu Wei-Da ;
Li Qing ;
Chen Xiao-Shuang ;
Lu Wei .
ACTA PHYSICA SINICA, 2019, 68 (12)