A note on extended Hurwitz-Lerch Zeta function

被引:0
|
作者
Ghayasuddin, M. [1 ]
Khan, N. U. [2 ]
Khan, Waseem A. [3 ]
Ahmad, Moin [4 ]
机构
[1] Integral Univ, Fac Sci, Dept Math, Lucknow 226026, India
[2] Aligarh Muslim Univ, Fac Engn & Technol, Dept Appl Math, Aligarh 202002, India
[3] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
[4] Shree Krishna Educ Inst, Dept Math, Sitapur 261125, India
关键词
Generalized Hurwitz-Lerch Zeta function; extended beta function; ex-tended hypergeometric function; Mellin transform; GAMMA; BETA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present research note, we introduce another extension of Hurwitz -Lerch Zeta function (HLZF) by using the generalized extended Beta function defined by Parmar [7]. We investigate its integral representations, Mellin transform, generating relations and differential formula. In view of diverse applications of the Hurwitz-Lerch Zeta functions, the results presented here are potentially useful in some other related research areas.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 50 条
  • [1] On extended Hurwitz-Lerch zeta function
    Luo, Min-Jie
    Parmar, Rakesh Kumar
    Raina, Ravinder Krishna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1281 - 1304
  • [2] Note on the Hurwitz-Lerch Zeta Function of Two Variables
    Choi, Junesang
    Sahin, Recep
    Yagci, Oguz
    Kim, Dojin
    SYMMETRY-BASEL, 2020, 12 (09):
  • [3] Remark on the Hurwitz-Lerch zeta function
    Choi, Junesang
    FIXED POINT THEORY AND APPLICATIONS, 2013, : 1 - 10
  • [4] On the Hurwitz-Lerch zeta-function
    Kanemitsu S.
    Katsurada M.
    Yoshimoto M.
    aequationes mathematicae, 2000, 59 (1) : 1 - 19
  • [5] Remark on the Hurwitz-Lerch zeta function
    Junesang Choi
    Fixed Point Theory and Applications, 2013
  • [6] A generalization of the Hurwitz-Lerch Zeta function
    Choi, Junesang
    Jang, Douk Soo
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (01) : 65 - 79
  • [7] Integral and computational representations of the extended Hurwitz-Lerch zeta function
    Srivastava, H. M.
    Saxena, Ram K.
    Pogany, Tibor K.
    Saxena, Ravi
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (07) : 487 - 506
  • [8] An extended general Hurwitz-Lerch zeta function as a Mathieu (a, λ)-series
    Jankov, Dragana
    Pogany, Tibor
    Saxena, Ram K.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (08) : 1473 - 1476
  • [9] A new integral transform associated with the -extended Hurwitz-Lerch zeta function
    Srivastava, H. M.
    Jolly, Nidhi
    Bansal, Manish Kumar
    Jain, Rashmi
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 1679 - 1692
  • [10] Two-sided inequalities for the extended Hurwitz-Lerch Zeta function
    Srivastava, H. M.
    Jankov, Dragana
    Pogany, Tibor K.
    Saxena, R. K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) : 516 - 522