Multi-Omics Techniques in Genetic Studies and Breeding of Forest Plants

被引:6
|
作者
Wang, Mingcheng [1 ,2 ]
Li, Rui [2 ,3 ]
Zhao, Qi [2 ,3 ]
机构
[1] Chengdu Univ, Inst Adv Study, 2025 Chengluo Rd, Chengdu 610106, Peoples R China
[2] Engn Res Ctr Sichuan Tibet Tradit Med Plant, Chengdu 610106, Peoples R China
[3] Chengdu Univ, Sch Food & Biol Engn, Chengdu 610106, Peoples R China
来源
FORESTS | 2023年 / 14卷 / 06期
关键词
genetic breeding; high-throughput omics; multi-omics integration; gene regulatory networks; functional element identification; MARKER-ASSISTED SELECTION; GENOME-WIDE IDENTIFICATION; RNA-SEQ; TRANSCRIPTION FACTOR; DIFFERENTIAL EXPRESSION; METABOLOMICS; PROTEOMICS; INSIGHTS; CLIMATE; RECONSTRUCTION;
D O I
10.3390/f14061196
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
In recent years, the ecological and economic values of forest plants have been gradually recognized worldwide. However, the growing global demand for new forest plant varieties with higher wood production capacity and better stress tolerance cannot be satisfied by conventional phenotype-based breeding, marker-assisted selection, and genomic selection. In the recent past, diverse omics technologies, including genomics, transcriptomics, epigenomics, proteomics, and metabolomics, have been developed rapidly, providing powerful tools for the precision genetic breeding of forest plants. Genomics lays a solid foundation for understanding complex biological regulatory networks, while other omics technologies provide different perspectives at different levels. Multi-omics integration combines the different omics technologies, becoming a powerful tool for genome-wide functional element identification in forest plant breeding. This review summarizes the recent progress of omics technologies and their applications in the genetic studies on forest plants. It will provide forest plant breeders with an elementary knowledge of multi-omics techniques for future breeding programs.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Are multi-omics enough?
    Vilanova, Cristina
    Porcar, Manuel
    NATURE MICROBIOLOGY, 2016, 1 (08)
  • [32] CLINICAL MULTI-OMICS
    Radstake, Timothy R.
    ANNALS OF THE RHEUMATIC DISEASES, 2019, 78 : 16 - 16
  • [33] 'Multi-omics' data integration: applications in probiotics studies
    Kwoji, Iliya Dauda
    Aiyegoro, Olayinka Ayobami
    Okpeku, Moses
    Adeleke, Matthew Adekunle
    NPJ SCIENCE OF FOOD, 2023, 7 (01)
  • [34] Undisclosed, unmet and neglected challenges in multi-omics studies
    Tarazona, Sonia
    Arzalluz-Luque, Angeles
    Conesa, Ana
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06): : 395 - 402
  • [35] Goose multi-omics database: A comprehensive multi-omics database for goose genomics
    Huang, Mingjiang
    Sun, Jiahe
    Wang, Jian
    Ye, Xiaoli
    Chen, Zhuping
    Zhao, Xianzhi
    Zhang, Keshan
    Ma, Lin
    Xue, Jiajia
    Luo, Yi
    Wu, Xianwen
    Wang, Haiwei
    Wang, Chao
    Liu, Zuohua
    Xie, Youhui
    Chen, Ying
    Wang, Qigui
    Wang, Yi
    Gao, Guangliang
    POULTRY SCIENCE, 2025, 104 (03)
  • [36] A multi-omics dataset for the analysis of frontotemporal dementia genetic subtypes
    Kevin Menden
    Margherita Francescatto
    Tenzin Nyima
    Cornelis Blauwendraat
    Ashutosh Dhingra
    Melissa Castillo-Lizardo
    Noémia Fernandes
    Lalit Kaurani
    Deborah Kronenberg-Versteeg
    Burcu Atasu
    Eldem Sadikoglou
    Barbara Borroni
    Salvador Rodriguez-Nieto
    Javier Simon-Sanchez
    Andre Fischer
    David Wesley Craig
    Manuela Neumann
    Stefan Bonn
    Patrizia Rizzu
    Peter Heutink
    Scientific Data, 10
  • [37] A multi-omics dataset for the analysis of frontotemporal dementia genetic subtypes
    Menden, Kevin
    Francescatto, Margherita
    Nyima, Tenzin
    Blauwendraat, Cornelis
    Dhingra, Ashutosh
    Castillo-Lizardo, Melissa
    Fernandes, Noemia
    Kaurani, Lalit
    Kronenberg-Versteeg, Deborah
    Atasu, Burcu
    Sadikoglou, Eldem
    Borroni, Barbara
    Rodriguez-Nieto, Salvador
    Simon-Sanchez, Javier
    Fischer, Andre
    Craig, David Wesley
    Neumann, Manuela
    Bonn, Stefan
    Rizzu, Patrizia
    Heutink, Peter
    SCIENTIFIC DATA, 2023, 10 (01)
  • [38] Genetic Insights into Blood Pressure From Kidney Multi-Omics
    Li, Chenyu
    Susztak, Katalin
    AMERICAN JOURNAL OF KIDNEY DISEASES, 2024, 84 (06) : 787 - 790
  • [39] Multi-omics analysis of genetic differences between Guangchenpi and Huajuhong
    Wang, Yiyun
    Huang, Ruiqiu
    Gao, Song
    Li, Hongbiao
    Zeng, Weizhu
    Tang, Bin
    Huang, Dongliang
    Zhou, Jingwen
    SCIENTIA HORTICULTURAE, 2025, 342
  • [40] Multi-omics disease module detection with an explainable Greedy Decision Forest
    Bastian Pfeifer
    Hubert Baniecki
    Anna Saranti
    Przemyslaw Biecek
    Andreas Holzinger
    Scientific Reports, 12