Dendrite-Free Sodium Metal Anodes Via Solid Electrolyte Interphase Engineering With a Covalent Organic Framework Separator

被引:58
作者
Kang, Tianxing [1 ]
Sun, Chenhao [2 ]
Li, Yang [1 ]
Song, Tianyi [1 ]
Guan, Zhiqiang [1 ]
Tong, Zhongqiu [1 ,3 ]
Nan, Junmin [2 ]
Lee, Chun-Sing [1 ]
机构
[1] City Univ Hong Kong, Ctr Superdiamond & Adv Films COSDAF, Dept Chem, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[2] South China Normal Univ, Sch Chem, Guangzhou 510700, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
关键词
COF separators; dendrite free; fast ion transport; sodium metal anodes; solid electrolyte interphase; ION BATTERIES; LITHIUM-ION; LI;
D O I
10.1002/aenm.202204083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid electrolyte interphases (SEIs) play a crucial role in keeping sodium metal anodes (SMAs) intact and improving battery life. However, the SEIs arising from irreversible reactions between metallic Na and electrolytes fail to suppress Na dendrite growth and have sluggish Na+ kinetics. Herein, a functionalized separator modified by a sp(2) carbon conjugated-covalent organic framework (sp(2)c-COF) is proposed to induce a robust SEI. X-ray photoelectron spectroscopy (XPS) analyses and theoretical calculations demonstrate that the SEI is rich in NaF because the structure of NaPF6 is unstable due to influences from the COF separator. In situ observations show that the Na dendrite is effectively suppressed even at a high current density of 20 mA cm(-2). Satisfactorily, the COF separator exhibits a high transference number of 0.78, achieving a fast Na plating/stripping process. Based on these superiorities, a symmetric cell Na|COF|Na shows stable cycling for over 1500 h at 20 mA cm(-2). In addition, full cells Na|COF|NaTi2(PO4)(3) (NTPO) present good rate performance (30 and 50 C) and excellent cycling stability over 5000 cycles at 5 and 10 C. The application of COFs to improve SMAs in this work demonstrates a new strategy for improving sodium metal batteries.
引用
收藏
页数:7
相关论文
共 37 条
[1]   How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? [J].
Abraham, K. M. .
ACS ENERGY LETTERS, 2020, 5 (11) :3544-3547
[2]   Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries [J].
An, Yongkang ;
Tan, Shuangshuang ;
Liu, Yu ;
Zhu, Kai ;
Hu, Lei ;
Rong, Yaoguang ;
An, Qinyou .
ENERGY STORAGE MATERIALS, 2021, 41 :354-379
[3]   Solid Electrolyte Interphases on Sodium Metal Anodes [J].
Bao, Changyuan ;
Wang, Bo ;
Liu, Peng ;
Wu, Hao ;
Zhou, Yu ;
Wang, Dianlong ;
Liu, Huakun ;
Dou, Shixue .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
[4]   Enabling room temperature sodium metal batteries [J].
Cao, Ruiguo ;
Mishra, Kuber ;
Li, Xiaolin ;
Qian, Jiangfeng ;
Engelhard, Mark H. ;
Bowden, Mark E. ;
Han, Kee Sung ;
Mueller, Karl T. ;
Henderson, Wesley A. ;
Zhang, Ji-Guang .
NANO ENERGY, 2016, 30 :825-830
[5]   Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction [J].
Chen, Hongwei ;
Tu, Hangyu ;
Hu, Chenji ;
Liu, Yi ;
Dong, Derui ;
Sun, Yufei ;
Dai, Yafei ;
Wang, Senlin ;
Qian, Hao ;
Lin, Zhiyong ;
Chen, Liwei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (03) :896-899
[6]   3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes [J].
Chi, Shang-Sen ;
Qi, Xing-Guo ;
Hu, Yong-Sheng ;
Fan, Li-Zhen .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[7]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[8]  
Enquan Jin M. A., 2017, SCIENCE, V357, P3
[9]   In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field [J].
Hong, Yi-Sheng ;
Li, Na ;
Chen, Haosen ;
Wang, Peng ;
Song, Wei-Li ;
Fang, Daining .
ENERGY STORAGE MATERIALS, 2018, 11 :118-126
[10]   Highly Stable Lithium/Sodium Metal Batteries with High Utilization Enabled by a Holey Two-Dimensional N-Doped TiNb2O7 Host [J].
Huang, Zhongyi ;
Li, Zhen ;
Zhu, Ming ;
Wang, Guanyao ;
Yu, Fangfang ;
Wu, Minghong ;
Xu, Gang ;
Dou, Shi-Xue ;
Liu, Hua-Kun ;
Wu, Chao .
NANO LETTERS, 2021, 21 (24) :10453-10461