Multi-task learning from multimodal single-cell omics with Matilda

被引:11
作者
Liu, Chunlei [1 ]
Huang, Hao [1 ,2 ]
Yang, Pengyi [1 ,2 ,3 ]
机构
[1] Univ Sydney, Childrens Med Res Inst, Fac Med & Hlth, Computat Syst Biol Grp, Westmead, NSW 2145, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia
基金
英国医学研究理事会;
关键词
RNA;
D O I
10.1093/nar/gkad157
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multimodal single-cell omics technologies enable multiple molecular programs to be simultaneously profiled at a global scale in individual cells, creating opportunities to study biological systems at a resolution that was previously inaccessible. However, the analysis of multimodal single-cell omics data is challenging due to the lack of methods that can integrate across multiple data modalities generated from such technologies. Here, we present Matilda, a multi-task learning method for integrative analysis of multimodal single-cell omics data. By leveraging the interrelationship among tasks, Matilda learns to perform data simulation, dimension reduction, cell type classification, and feature selection in a single unified framework. We compare Matilda with other state-of-the-art methods on datasets generated from some of the most popular multimodal single-cell omics technologies. Our results demonstrate the utility of Matilda for addressing multiple key tasks on integrative multimodal single-cell omics data analysis.
引用
收藏
页数:14
相关论文
共 44 条
  • [1] A comparison of automatic cell identification methods for single-cell RNA sequencing data
    Abdelaal, Tamim
    Michielsen, Lieke
    Cats, Davy
    Hoogduin, Dylan
    Mei, Hailiang
    Reinders, Marcel J. T.
    Mahfouz, Ahmed
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [2] Computational principles and challenges in single-cell data integration
    Argelaguet, Ricard
    Cuomo, Anna S. E.
    Stegle, Oliver
    Marioni, John C.
    [J]. NATURE BIOTECHNOLOGY, 2021, 39 (10) : 1202 - 1215
  • [3] Ashuach T., 2021, bioRxiv, V2021, p2020.457057, DOI DOI 10.1101/2021.08.20.457057
  • [4] Joint analysis of heterogeneous single-cell RNA-seq dataset collections
    Barkas, Nikolas
    Petukhov, Viktor
    Nikolaeva, Daria
    Lozinsky, Yaroslav
    Demharter, Samuel
    Khodosevich, Konstantin
    Kharchenko, Peter V.
    [J]. NATURE METHODS, 2019, 16 (08) : 695 - +
  • [5] SPARSim single cell: a count data simulator for scRNA-seq data
    Baruzzo, Giacomo
    Patuzzi, Ilaria
    Di Camillo, Barbara
    [J]. BIOINFORMATICS, 2020, 36 (05) : 1468 - 1475
  • [6] scID Uses Discriminant Analysis to Identify Transcriptionally Equivalent Cell Types across Single-Cell RNA-Seq Data with Batch Effect
    Boufea, Katerina
    Seth, Sohan
    Batada, Nizar N.
    [J]. ISCIENCE, 2020, 23 (03)
  • [7] A benchmark study of simulation methods for single-cell RNA sequencing data
    Cao, Yue
    Yang, Pengyi
    Yang, Jean Yee Hwa
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Multi-omics single-cell data integration and regulatory inference with graph-linked embedding
    Cao, Zhi-Jie
    Gao, Ge
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (10) : 1458 - +
  • [9] Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID
    Cortal, Akira
    Martignetti, Loredana
    Six, Emmanuelle
    Rausell, Antonio
    [J]. NATURE BIOTECHNOLOGY, 2021, 39 (09) : 1095 - +
  • [10] Covert I., 2022, BIORXIV, DOI [10.1101/2022.05.13.491738, DOI 10.1101/2022.05.13.491738]