On fractional sums of the divisor functions

被引:1
作者
Zhang, Wei [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
关键词
Divisor function; exponential sum; integral part; floor function;
D O I
10.1142/S1793042123500665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fractional sum of the divisor functions. We can improve previous results considered by [O. Bordelles, On certain sums of number theory, Int. J. Number Theory 18(9) (2022) 2053-2074; K. Liu, J. Wu and Z. S. Yang, On some sums involving the integral part function, preprint (2021); arXiv:2109.01382v1 [math.NT]]. Precisely, we can show that S-tau k (x) = sigma(n <= x) tau(k)([x/n]) = sigma(infinity)(n=1) tau(k)(n)/n(n + 1) x + O(x(9/19+epsilon)),where epsilon is an arbitrary small positive constant and tau(k)(n) is the number of representations of n as product of k natural numbers.
引用
收藏
页码:1379 / 1386
页数:8
相关论文
共 12 条
[1]  
Bordelles O., 2020, ARITHMETIC TALES ADV
[2]   On certain sums of number theory [J].
Bordelles, Olivier .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (09) :2053-2074
[3]   On a sum involving the Euler function [J].
Bordelles, Olivier ;
Dai, Lixia ;
Heyman, Randell ;
Pan, Hao ;
Shparlinski, Igor E. .
JOURNAL OF NUMBER THEORY, 2019, 202 :278-297
[4]  
Graham W., 1991, CORPUTS METHOD EXPON
[5]  
Jutila M., 1987, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, V80
[6]  
Liu K., 2021, ARXIV
[7]   A variant of the prime number theorem [J].
Liu, Kui ;
Wu, Jie ;
Yang, Zhishan .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (02) :388-396
[8]   On a sum involving the divisor function [J].
Ma, Jing ;
Sun, Huayan .
PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (02) :185-191
[9]   The fractional sum of small arithmetic functions [J].
Stucky, Joshua .
JOURNAL OF NUMBER THEORY, 2022, 238 :731-739
[10]   SOME EXTREMAL-FUNCTIONS IN FOURIER-ANALYSIS [J].
VAALER, JD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (02) :183-216