CO2 avoidance cost of fly ash geopolymer concrete

被引:10
|
作者
Luan, Chenchen [1 ]
Zhou, Ao [1 ]
Li, Ye [1 ]
Zou, Dujian [1 ]
Gao, Pan [1 ]
Liu, Tiejun [1 ]
机构
[1] Harbin Inst Technol, Shenzhen Key Lab Intelligent Struct Syst Civil Eng, Shenzhen 518055, Peoples R China
关键词
Geopolymer; Alkali-activated material; Fly ash; Cost; CO2; emissions; LIFE-CYCLE ASSESSMENT; LOW-CALCIUM FLY; EARLY STRENGTH PROPERTIES; ALKALI-ACTIVATED SLAG; COMPRESSIVE STRENGTH; MECHANICAL-PROPERTIES; BOND STRENGTH; DURABILITY PROPERTIES; SILICA FUME; CEMENT;
D O I
10.1016/j.conbuildmat.2024.135193
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Using geopolymer concrete (GC) is a technically feasible decarbonization strategy in the cement and concrete industry shown by numerous papers. A key factor determining its commercial application is whether its cost is competitive. However, related study is scarce. In this paper, we present the analysis of GC's CO2 avoidance cost, the cost incurred to reduce one metric ton of CO2 emissions. The results show that among the 486 GC mixtures analyzed, only seven yield negative CO2 avoidance costs, while 379 are even more expensive than capturing CO2 from cement plants, which is another technically feasible decarbonization strategy and has been evaluated to have a CO2 avoidance cost of 55 USD/tCO(2) in Chinese demonstration project. Only a few GC mixtures with lower CO2 avoidance costs will be considered by the industry, and they are associated with low activator dosage and high compressive strength. To quantify this relationship, we introduce the activator index (Ai), which refers to the activator dosage (kg center dot m(-3)) required to achieve 1 MPa of compressive strength. The result shows that Ai values below certain thresholds correspond to lower CO2 avoidance costs and significant emission reductions of GC. This Ai-based criterion helps identify the optimal GC mixture that effectively reduces CO2 emissions at the lowest possible cost, thereby promoting its commercial application.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Intelligent optimization for modeling carbon dioxide footprint in fly ash geopolymer concrete: A novel approach for minimizing CO2 emissions
    Wudil, Y. S.
    Al-Fakih, Amin
    Al-Osta, Mohammed A.
    Gondal, M. A.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (01):
  • [2] Environmental impact assessment of fly ash and silica fume based geopolymer concrete
    Bajpai, Rishabh
    Choudhary, Kailash
    Srivastava, Anshuman
    Sangwan, Kuldip Singh
    Singh, Manpreet
    JOURNAL OF CLEANER PRODUCTION, 2020, 254
  • [3] Compressive Strength Estimation and CO2 Reduction Design of Fly Ash Composite Concrete
    Han, Yi
    Lin, Run-Sheng
    Wang, Xiao-Yong
    BUILDINGS, 2022, 12 (02)
  • [4] A comprehensive review on fly ash-based geopolymer: a pathway for sustainable future
    Gaurav, Govind
    Kandpal, Shreesh Chandra
    Mishra, Deepika
    Kotoky, Needhi
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024, 13 (01) : 100 - 144
  • [5] Development of Geopolymer Concrete from Fly Ash and Bottom Ash Mixture
    Sinha, Deependra Kumar
    Kumar, A.
    Kumar, Sanjay
    TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY, 2014, 73 (02) : 143 - 148
  • [6] Characteristics of fly ash-based geopolymer concrete in the field for 4 years
    Ge, Xiaonan
    Liu, Yiwei
    Mao, Yuguang
    Hu, Xiang
    Shi, Caijun
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 382
  • [7] Sulfuric acid resistance of fly ash based geopolymer concrete
    Mehta, Ankur
    Siddique, Rafat
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 146 : 136 - 143
  • [8] A Taguchi Approach for Optimizing Design Mixture of Geopolymer Concrete Incorporating Fly Ash, Ground Granulated Blast Furnace Slag and Silica Fume
    Karthik, Sundaravadivelu
    Mohan, Kaliyaperumal Saravana Raja
    CRYSTALS, 2021, 11 (11)
  • [9] Fly Ash Based Geopolymer Concrete: a Comprehensive Review
    Ojha, Avinash
    Aggarwal, Praveen
    SILICON, 2022, 14 (06) : 2453 - 2472
  • [10] Lightweight fly ash-based geopolymer concrete
    Abdulkareem, Omar A.
    Al Bakri, A. M. Mustafa
    Kamarudin, H.
    Nizar, I. Khairul
    ADVANCED MATERIALS ENGINEERING AND TECHNOLOGY, 2012, 626 : 781 - +