Enhancing Protein-Ligand Binding Affinity Predictions Using Neural Network Potentials

被引:14
|
作者
Zariquiey, Francesc Sabanes [1 ,2 ]
Galvelis, Raimondas [1 ,2 ]
Gallicchio, Emilio [3 ]
Chodera, John D. [4 ]
Markland, Thomas E. [5 ]
De Fabritiis, Gianni [1 ,2 ,6 ]
机构
[1] Univ Pompeu Fabra, Computat Sci Lab, Barcelona 08003, Spain
[2] Acellera Labs, Barcelona 08005, Spain
[3] CUNY Brooklyn Coll, Grad Ctr, Dept Chem, New York, NY 11210 USA
[4] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA
[5] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[6] Inst Catalana Recerca & Estudis Avancats ICREA, Barcelona 08010, Spain
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GENERAL FORCE-FIELD; PARAMETERS;
D O I
10.1021/acs.jcim.3c02031
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
This letter gives results on improving protein-ligand binding affinity predictions based on molecular dynamics simulations using machine learning potentials with a hybrid neural network potential and molecular mechanics methodology (NNP/MM). We compute relative binding free energies with the Alchemical Transfer Method and validate its performance against established benchmarks and find significant enhancements compared with conventional MM force fields like GAFF2.
引用
收藏
页码:1481 / 1485
页数:5
相关论文
共 50 条
  • [1] Simulating protein-ligand binding with neural network potentials
    Lahey, Shae-Lynn J.
    Rowley, Christopher N.
    CHEMICAL SCIENCE, 2020, 11 (09) : 2362 - 2368
  • [2] Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction
    Yi, Yiqiang
    Wan, Xu
    Zhao, Kangfei
    Le, Ou-Yang
    Zhao, Peilin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4336 - 4347
  • [3] Hybrid Quantum Neural Network Approaches to Protein-Ligand Binding Affinity Prediction
    Avramouli, Maria
    Savvas, Ilias K.
    Vasilaki, Anna
    Tsipourlianos, Andreas
    Garani, Georgia
    MATHEMATICS, 2024, 12 (15)
  • [4] GraphscoreDTA: optimized graph neural network for protein-ligand binding affinity prediction
    Wang, Kaili
    Zhou, Renyi
    Tang, Jing
    Li, Min
    BIOINFORMATICS, 2023, 39 (06)
  • [5] SE-OnionNet: A Convolution Neural Network for Protein-Ligand Binding Affinity Prediction
    Wang, Shudong
    Liu, Dayan
    Ding, Mao
    Du, Zhenzhen
    Zhong, Yue
    Song, Tao
    Zhu, Jinfu
    Zhao, Renteng
    FRONTIERS IN GENETICS, 2021, 11
  • [6] GNNSeq: A Sequence-Based Graph Neural Network for Predicting Protein-Ligand Binding Affinity
    Dandibhotla, Somanath
    Samudrala, Madhav
    Kaneriya, Arjun
    Dakshanamurthy, Sivanesan
    PHARMACEUTICALS, 2025, 18 (03)
  • [7] Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network
    Xia, Chunqiu
    Feng, Shi-Hao
    Xia, Ying
    Pan, Xiaoyong
    Shen, Hong-Bin
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [8] Enhancing protein-ligand binding affinity prediction through sequential fusion of graph and convolutional neural networks
    Yang, Yimin
    Zhang, Ruiqin
    Lin, Zijing
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (32) : 2929 - 2940
  • [9] Neural networks prediction of the protein-ligand binding affinity with circular fingerprints
    Yin, Zuode
    Song, Wei
    Li, Baiyi
    Wang, Fengfei
    Xie, Liangxu
    Xu, Xiaojun
    TECHNOLOGY AND HEALTH CARE, 2023, 31 : S487 - S495
  • [10] Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning
    Luo, Ding
    Liu, Dandan
    Qu, Xiaoyang
    Dong, Lina
    Wang, Binju
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1892 - 1906