Soliton confinement in the double sine-Gordon model

被引:1
作者
Rutkevich, Sergei [1 ]
机构
[1] Berg Univ Wuppertal, Fak Math & Nat Wissensch, D-42097 Wuppertal, Germany
来源
SCIPOST PHYSICS | 2024年 / 16卷 / 02期
关键词
ISING FIELD-THEORY; MAGNETIC-FIELD; SPECTRUM;
D O I
10.21468/SciPostPhys.16.2.042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The double sine -Gordon field theory in the weak confinement regime is studied. It represents the small non -integrable deformation of the standard sine -Gordon model caused by the cosine perturbation with the frequency reduced by the factor of 2. This perturbation leads to the confinement of the sine -Gordon solitons, which become coupled into the 'meson' bound states. We classify the meson states in the weak confinement regime, and obtain three asymptotic expansions for their masses, which can be used in different regions of the model parameters. It is shown, that the sine -Gordon breathers, slightly deformed by the perturbation term, transform into the mesons upon increase of the sine -Gordon coupling constant.
引用
收藏
页数:27
相关论文
共 32 条
  • [1] Nonperturbative study of the two-frequency sine-Gordon model
    Bajnok, Z
    Palla, L
    Takács, G
    Wágner, F
    [J]. NUCLEAR PHYSICS B, 2001, 601 (03) : 503 - 538
  • [2] The k-folded sine-Gordon model in finite volume
    Bajnok, Z
    Palla, L
    Takács, G
    Wágner, E
    [J]. NUCLEAR PHYSICS B, 2000, 587 (1-3) : 585 - 618
  • [3] Baxter R. J., 1982, Exactly solved models in statistical mechanics
  • [4] KINK-ANTIKINK INTERACTIONS IN THE DOUBLE SINE-GORDON EQUATION
    CAMPBELL, DK
    PEYRARD, M
    SODANO, P
    [J]. PHYSICA D, 1986, 19 (02): : 165 - 205
  • [5] Non-integrable aspects of the multi-frequency sine-Gordon model
    Delfino, G
    Mussardo, G
    [J]. NUCLEAR PHYSICS B, 1998, 516 (03) : 675 - 703
  • [6] Non-integrable quantum field theories as perturbations of certain integrable models
    Delfino, G
    Mussardo, G
    Simonetti, P
    [J]. NUCLEAR PHYSICS B, 1996, 473 (03) : 469 - 508
  • [7] Ising field theory in a magnetic field: Analytic properties of the free energy
    Fonseca, P
    Zamolodchikov, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (3-6) : 527 - 590
  • [8] Fonseca P, 2006, Arxiv, DOI [arXiv:hep-th/0612304, 10.48550/arXiv.hep-th/0612304, DOI 10.48550/ARXIV.HEP-TH/0612304]
  • [9] QUANTIZATION OF SOLITONS
    KOREPIN, VE
    FADDEEV, LD
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 25 (02) : 1039 - 1049
  • [10] Kormos M, 2017, NAT PHYS, V13, P246, DOI [10.1038/NPHYS3934, 10.1038/nphys3934]