Hierarchical Perceptual Graph Attention Network for Knowledge Graph Completion

被引:0
|
作者
Han, Wenhao [1 ]
Liu, Xuemei [1 ,2 ]
Zhang, Jianhao [1 ]
Li, Hairui [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Informat Engn, Zhengzhou 450046, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Management & Econ, Zhengzhou 450046, Peoples R China
关键词
knowledge graph completion; hierarchical semantic feature; graph neural network;
D O I
10.3390/electronics13040721
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge graph completion (KGC), the process of predicting missing knowledge through known triples, is a primary focus of research in the field of knowledge graphs. As an important graph representation technique in deep learning, graph neural networks (GNNs) perform well in knowledge graph completion, but most existing graph neural network-based knowledge graph completion methods tend to aggregate neighborhood information directly and individually, ignoring the rich hierarchical semantic structure of KGs. As a result, how to effectively deal with multi-level complex relations is still not well resolved. In this study, we present a hierarchical knowledge graph completion technique that combines both relation-level and entity-level attention and incorporates a weight matrix to enhance the significance of the embedded information under different semantic conditions. Furthermore, it updates neighborhood information to the central entity using a hierarchical aggregation approach. The proposed model enhances the capacity to capture hierarchical semantic feature information and is adaptable to various scoring functions as decoders, thus yielding robust results. We conducted experiments on a public benchmark dataset and compared it with several state-of-the-art models, and the experimental results indicate that our proposed model outperforms existing models in several aspects, proving its superior performance and validating the effectiveness of the model.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Hyperbolic hierarchical graph attention network for knowledge graph completion
    Xu, Hao
    Chen, Shudong
    Qi, Donglin
    Tong, Da
    Yu, Yong
    Chen, Shuai
    High Technology Letters, 2024, 30 (03) : 271 - 279
  • [2] Hyperbolic hierarchical graph attention network for knowledge graph completion
    许浩
    CHEN Shudong
    QI Donglin
    TONG Da
    YU Yong
    CHEN Shuai
    HighTechnologyLetters, 2024, 30 (03) : 271 - 279
  • [3] Relational Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion
    Zhang, Zhao
    Zhuang, Fuzhen
    Zhu, Hengshu
    Shi, Zhiping
    Xiong, Hui
    He, Qing
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9612 - 9619
  • [4] Knowledge graph completion model based on hyperbolic hierarchical attention network
    Luo, Jiaohuang
    Song, Changlong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (09) : 3893 - 3909
  • [5] Knowledge graph completion based on graph contrastive attention network
    Liu D.
    Fang Q.
    Zhang X.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (08): : 1428 - 1435
  • [6] Hierarchical graph attention network for temporal knowledge graph reasoning
    Shao, Pengpeng
    He, Jiayi
    Li, Guanjun
    Zhang, Dawei
    Tao, Jianhua
    NEUROCOMPUTING, 2023, 550
  • [7] Graph attention network with dynamic representation of relations for knowledge graph completion
    Zhang, Xin
    Zhang, Chunxia
    Guo, Jingtao
    Peng, Cheng
    Niu, Zhendong
    Wu, Xindong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 219
  • [8] RAGAT: Relation Aware Graph Attention Network for Knowledge Graph Completion
    Liu, Xiyang
    Tan, Huobin
    Chen, Qinghong
    Lin, Guangyan
    IEEE ACCESS, 2021, 9 : 20840 - 20849
  • [9] Learnable convolutional attention network for knowledge graph completion
    Shang, Bin
    Zhao, Yinliang
    Liu, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [10] Graph Attention Network with Relational Dynamic Factual Fusion for Knowledge Graph Completion
    Yu, Mei
    Zuo, Yilin
    Zhang, Wenbin
    Zhao, Mankun
    Xu, Tianyi
    Zhao, Yue
    Guo, Jiujiang
    Yu, Jian
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT IV, ECML PKDD 2024, 2024, 14944 : 89 - 106