Quantum advantage in variational Bayes inference

被引:1
作者
Miyahara, Hideyuki [1 ]
Roychowdhury, Vwani [1 ]
机构
[1] Univ Calif Los Angeles, Henry Samueli Sch Engn & Appl Sci, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
关键词
quantum machine learning; variational Bayes inference; quantum annealing; deterministic annealing; OPTIMIZATION; ALGORITHM;
D O I
10.1073/pnas.2212660120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Variational Bayes (VB) inference algorithm is used widely to estimate both the parameters and the unobserved hidden variables in generative statistical models. The algorithm-inspired by variational methods used in computational physics-is iterative and can get easily stuck in local minima, even when classical techniques, such as deterministic annealing (DA), are used. We study a VB inference algorithm based on a nontraditional quantum annealing approach-referred to as quantum annealing variational Bayes (QAVB) inference-and show that there is indeed a quantum advantage to QAVB over its classical counterparts. In particular, we show that such better performance is rooted in key quantum mechanics concepts: i) The ground state of the Hamiltonian of a quantum system-defined from the given data-corresponds to an optimal solution for the minimization problem of the variational free energy at very low temperatures; ii) such a ground state can be achieved by a technique paralleling the quantum annealing process; and iii) starting from this ground state, the optimal solution to the VB problem can be achieved by increasing the heat bath temperature to unity, and thereby avoiding local minima introduced by spontaneous symmetry breaking observed in classical physics based VB algorithms. We also show that the update equations of QAVB can be potentially implemented using [log K] qubits and O(K) operations per step, where K is the number of values hidden categorical variables can take. Thus, QAVB can match the time complexity of existing VB algorithms, while delivering higher performance.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Hacking Cryptographic Protocols with Advanced Variational Quantum Attacks [J].
Aizpurua, Borja ;
Bermejo, Pablo ;
Martinez, Josu Etxezarreta ;
Orus, Roman .
ACM TRANSACTIONS ON QUANTUM COMPUTING, 2025, 6 (02)
[32]   Variational Bayes approach for model aggregation in unsupervised classification with Markovian dependency [J].
Volant, Stevenn ;
Magniette, Marie-Laure Martin ;
Robin, Stephane .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (08) :2375-2387
[33]   Variational Bayes from the Primitive Initial Point for Gaussian Mixture Estimation [J].
Ishikawa, Yuta ;
Takeuchi, Ichiro ;
Nakano, Ryohei .
NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2009, 5863 :159-+
[34]   An Adaptive Federated Filter Based on Variational Bayes With Application to Multisource Navigation [J].
Wang, Ziyi ;
Li, Ning ;
Wang, Zhao ;
Zhu, Fengchi ;
Du, Xue .
IEEE SENSORS JOURNAL, 2023, 23 (09) :9859-9870
[35]   The Hahn Quantum Variational Calculus [J].
Malinowska, A. B. ;
Torres, D. F. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 147 (03) :419-442
[36]   Variational Quantum Pulse Learning [J].
Liang, Zhiding ;
Wang, Hanrui ;
Cheng, Jinglei ;
Ding, Yongshan ;
Ren, Hang ;
Gao, Zhengqi ;
Hu, Zhirui ;
Boning, Duane S. ;
Qian, Xuehai ;
Han, Song ;
Jiang, Weiwen ;
Shi, Yiyu .
2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, :556-565
[37]   Variational quantum amplitude estimation [J].
Plekhanov, Kirill ;
Rosenkranz, Matthias ;
Fiorentini, Mattia ;
Lubasch, Michael .
QUANTUM, 2022, 6
[38]   Provable quantum advantage in randomness processing [J].
Dale, Howard ;
Jennings, David ;
Rudolph, Terry .
NATURE COMMUNICATIONS, 2015, 6
[39]   Variational quantum Boltzmann machines [J].
Christa Zoufal ;
Aurélien Lucchi ;
Stefan Woerner .
Quantum Machine Intelligence, 2021, 3
[40]   Variational Quantum Algorithms in Finance [J].
Cong, Thanh N. N. ;
Thi, Hiep. L. .
PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 6, 2024, 1002 :15-25