Modeling and Benchmarking 5nm Ferroelectric FinFET from Room Temperature down to Cryogenic Temperatures

被引:0
作者
Parihar, Shivendra Singh [1 ,2 ]
Chatterjee, Swetaki [1 ,2 ]
Pahwa, Girish [3 ]
Chauhan, Yogesh Singh [2 ]
Amrouch, Hussam [1 ,4 ,5 ]
机构
[1] Univ Stuttgart, Semicond Test & Reliabil STAR, Stuttgart, Germany
[2] Indian Inst Technol Kanpur, Dept Elect Engn, Kanpur, India
[3] Univ Calif Berkeley, Dept Elect Engn Comp Sci, Berkeley, CA USA
[4] Munich Inst Robot & Machine Intelligence, Munich, Germany
[5] Tech Univ Munich TUM, AI Processor Design, Munich, Germany
来源
2023 IEEE 23RD INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, NANO | 2023年
关键词
FeFET; Cryogenic; Quantum computing;
D O I
10.1109/NANO58406.2023.10231310
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rise in quantum-computing systems, space electronics, and superconducting processors requires compatible cryogenic memories. The stringent operating conditions for these applications put additional constraints on the endurance and reliable operation of such memories. Ferroelectric-Field Effect Transistors (FeFETs) based on ferroelectric properties of the Hafnium Zirconium Oxide (HZO) can be an excellent choice for these systems. This requires a thorough characterization of FeFET at deep cryogenic temperatures. Also, the scalability of the FeFET to lower technology nodes implies a lower area and reduced leakage. In this work, we, therefore, fully characterize the 5 nm node Fe-FinFET from 10 K to 400 K. To this end, the underlying 5 nm node FinFET transistor is calibrated with experimental data from cryogenic temperatures to above-room temperatures. The material parameters of the Ferroelectric layer are also calibrated with reported measurement data. We propose that the reported endurance improvement of the HZO layer at cryogenic temperatures can improve the reliability of the Fe-FinFET. The observed wake-up and fatigue at higher temperatures are also nonexistent at cryogenic temperatures. Although the memory window is reduced at cryogenic temperature compared to room temperature, we can still hold multiple states. This is also verified through our simulations. Lastly, we demonstrate the variability in high and low threshold voltage (VTH) states due to extrinsic variation sources of the underlying transistor and ferroelectric material parameters. We observe a relatively lower variation at cryogenic temperature.
引用
收藏
页码:643 / 648
页数:6
相关论文
共 22 条
[1]   Thermal evolution of ferroelectric behavior in epitaxial Hf0.5Zr0.5O2 [J].
Adkins, J. W. ;
Fina, I. ;
Sanchez, F. ;
Bakaul, S. R. ;
Abiade, J. T. .
APPLIED PHYSICS LETTERS, 2020, 117 (14)
[2]   Ferroelectricity in hafnium oxide thin films [J].
Boescke, T. S. ;
Mueller, J. ;
Braeuhaus, D. ;
Schroeder, U. ;
Boettger, U. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[3]  
bsim.berkeley, BSIM-CMG 111.2.1 Technical Manual
[4]  
Chatterjee S., 2002, IEEE Transactions on Electron Devices
[5]   Ferroelectric FDSOI FET modeling for memory and logic applications [J].
Chatterjee, Swetaki ;
Kumar, Shubham ;
Gaidhane, Amol ;
Dabhi, Chetan Kumar ;
Chauhan, Yogesh Singh ;
Amrouch, Hussam .
SOLID-STATE ELECTRONICS, 2023, 200
[6]   Compact Ferroelectric Programmable Majority Gate for Compute-in-Memory Applications [J].
Deng, Shan ;
Benkhelifa, Mahdi ;
Thomann, Simon ;
Faris, Zubair ;
Zhao, Zijian ;
Huang, Tzu-Jung ;
Xu, Yixin ;
Narayanan, Vijaykrishnan ;
Ni, Kai ;
Amrouch, Hussam .
2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
[7]  
Dünkel S, 2017, INT EL DEVICES MEET
[8]   Stabilization of ferroelectric phase of Hf0.58Zr0.42O2 on NbN at 4K [J].
Henry, M. D. ;
Smith, S. W. ;
Lewis, R. M. ;
Ihlefeld, J. F. .
APPLIED PHYSICS LETTERS, 2019, 114 (09)
[9]   High-Density and High-Speed 4T FinFET SRAM for Cryogenic Computing [J].
Hu, Vita Pi-Ho ;
Liu, Chang-Ju ;
Chiang, Hung-Li ;
Wang, Jer-Fu ;
Cheng, Chao-Ching ;
Chen, Tzu-Chiang ;
Chang, Meng-Fan .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[10]   Characterizing Ferroelectric Properties of Hf0.5Zr0.5O2 From Deep-Cryogenic Temperature (4 K) to 400 K [J].
Hur, Jae ;
Luo, Yuan-Chun ;
Wang, Zheng ;
Lombardo, Sarah ;
Khan, Asif Islam ;
Yu, Shimeng .
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2021, 7 (02) :168-174