Composite observer-based backstepping tracking control of fractional-order chaotic systems

被引:1
作者
Han, Lu [1 ]
Zhang, Lili [1 ]
Chen, Yong [2 ]
机构
[1] Xian Technol Univ, Sch Sci, Xian 710021, Peoples R China
[2] Sichuan Technol & Business Univ, Sch Comp, Chengdu 611745, Peoples R China
关键词
SLIDING-MODE CONTROL; FEEDBACK-CONTROL; SYNCHRONIZATION; QUADROTOR; DYNAMICS;
D O I
10.1063/5.0157857
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An observer-based backstepping strategy is constructed for fractional-order chaotic systems. A disturbance observer and a state observer are simultaneously constructed to gain the estimations of uncertain disturbances and unmeasurable states, respectively, and an auxiliary system is developed to connect the two observers. Then, a fractional-order command filter is used to avoid tedious derivatives of virtual signals so as to reduce computational burden. A coupling backstepping controller, which ensures the convergence of tracking error and the boundedness of closed-loop signals, is constructed. Finally, two simulation examples are given to verify the effectiveness of theoretical analysis.
引用
收藏
页数:12
相关论文
共 45 条
[1]   Fuzzy Command Filter Backstepping Control for Incommensurate Fractional-Order Systems via Composite Learning [J].
Alsaadi, Fawaz E. ;
Zhang, Xiulan ;
Alassafi, Madini O. ;
Alotaibi, Reem M. ;
Ahmad, Adil M. ;
Cao, Jinde .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2022, 24 (07) :3293-3307
[2]   Cancellable face recognition based on fractional-order Lorenz chaotic system and Haar wavelet fusion [J].
Badr, Iman S. ;
Radwan, Ahmed G. ;
EL-Rabaie, El-Sayed M. ;
Said, Lobna A. ;
El Banby, Ghada M. ;
El-Shafai, Walid ;
Abd El-Samie, Fathi E. .
DIGITAL SIGNAL PROCESSING, 2021, 116
[3]   A fast algorithm for fractional Helmholtz equation with application to electromagnetic waves propagation [J].
Belevtsov, Nikita S. ;
Lukashchuk, Stanislav Yu. .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 416
[4]   Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems [J].
Boroujeni, Elham Amini ;
Momeni, Hamid Reza .
SIGNAL PROCESSING, 2012, 92 (10) :2365-2370
[5]   Observers-based event-triggered adaptive fuzzy backstepping synchronization of uncertain fractional order chaotic systems [J].
Dong, Hanlin ;
Cao, Jinde ;
Liu, Heng .
CHAOS, 2023, 33 (04)
[6]   Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm [J].
Efe, Mehmet Oender .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (06) :1561-1570
[7]   A Communication Scheme based on Fractional Order Chaotic Laser for Internet of Things [J].
Fataf, N. A. . A. . ;
Rahim, M. F. Abdul ;
He, Shaobo ;
Banerjee, Santo .
INTERNET OF THINGS, 2021, 15
[8]   An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model [J].
Ghanbari, Behzad ;
Gunerhan, Hatira ;
Srivastava, H. M. .
CHAOS SOLITONS & FRACTALS, 2020, 138
[9]   Robust tracking control for quadrotor with unknown nonlinear dynamics using adaptive neural network based fractional-order backstepping control [J].
Guettal, Lemya ;
Chelihi, Abdelghani ;
Ajgou, Riadh ;
Touba, Mostefa Mohamed .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (14) :7337-7364
[10]   Command filtered adaptive fuzzy control of fractional-order nonlinear systems [J].
Ha, Shumin ;
Chen, Liangyun ;
Liu, Heng ;
Zhang, Shaoyu .
EUROPEAN JOURNAL OF CONTROL, 2022, 63 :48-60