Space-time enriched finite elements for elastodynamic wave propagation

被引:1
|
作者
Quaine, Kieran [1 ,2 ,3 ,4 ]
Gimperlein, Heiko [1 ,5 ]
机构
[1] Leopold Franzens Univ Innsbruck, Engn Math, Technikerstr 13, A-6020 Innsbruck, Austria
[2] Univ Edinburgh, Maxwell Inst Math Sci, James Clerk Maxwell Bldg, Edinburgh EH9 3FD, Scotland
[3] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg, Edinburgh EH9 3FD, Scotland
[4] FEN Res GmbH, Technikerstr 1-3, A-6020 Innsbruck, Austria
[5] Univ Parma, Dept Math Phys & Comp Sci, Parco Area Sci 53-A, I-43124 Parma, Italy
基金
英国工程与自然科学研究理事会;
关键词
Generalised finite-element methods; Space-time methods; Elastodynamics; POSTERIORI ERROR ESTIMATE; PARTITION; SCATTERING;
D O I
10.1007/s00366-023-01874-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article investigates a generalised finite-element method for time-dependent elastic wave propagation, based on plane-wave enrichments of the approximation space. The enrichment in both space and time allows good approximation of oscillatory solutions even on coarse mesh grids and for large time steps. The proposed method is based on a discontinuous Galerkin discretisation in time and conforming finite elements in space. Numerical experiments study the stability and accuracy and confirm significant reductions of the computational effort required to achieve engineering accuracy.
引用
收藏
页码:4077 / 4091
页数:15
相关论文
共 50 条
  • [1] Space–time enriched finite elements for elastodynamic wave propagation
    Kieran Quaine
    Heiko Gimperlein
    Engineering with Computers, 2023, 39 : 4077 - 4091
  • [2] A finite element method enriched for wave propagation problems
    Ham, Seounghyun
    Bathe, Klaus-Juergen
    COMPUTERS & STRUCTURES, 2012, 94-95 : 1 - 12
  • [3] On a space-time implementation of the wave equation using virtual elements
    Wriggers, P.
    Junker, Ph.
    COMPUTATIONAL MECHANICS, 2024,
  • [4] Bridging scale simulation of lattice fracture using enriched space-time Finite Element Method
    Qian, Dong
    Chirputkar, Shardool
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (11) : 819 - 850
  • [5] Space-time least-squares finite elements for parabolic equations
    Fuhrer, Thomas
    Karkulik, Michael
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 92 : 27 - 36
  • [6] An energy approach to space-time Galerkin BEM for wave propagation problems
    Aimi, A.
    Diligenti, M.
    Guardasoni, C.
    Mazzieri, I.
    Panizzi, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (09) : 1196 - 1240
  • [7] Explicit time integration with lumped mass matrix for enriched finite elements solution of time domain wave problems
    Drolia, M.
    Mohamed, M. S.
    Laghrouche, O.
    Seaid, M.
    El Kacimi, A.
    APPLIED MATHEMATICAL MODELLING, 2020, 77 : 1273 - 1293
  • [8] Space-time boundary elements for frictional contact in elastodynamics
    Aimi, Alessandra
    Di Credico, Giulia
    Gimperlein, Heiko
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [9] Modelling of fluid-structure interactions with the space-time finite elements: Solution techniques
    Tezduyar, Tayfun E.
    Sathe, Sunil
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (6-8) : 855 - 900
  • [10] Time domain boundary elements for elastodynamic contact
    Aimi, Alessandra
    Di Credico, Giulia
    Gimperlein, Heiko
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 415