Road Map for In Situ Grown Binder-Free MOFs and Their Derivatives as Freestanding Electrodes for Supercapacitors

被引:50
作者
Savariraj, Antonysamy Dennyson [1 ]
Raj, Chellan Justin [2 ]
Kale, Amol Marotrao [1 ]
Kim, Byung Chul [1 ]
机构
[1] Sunchon Natl Univ, Dept Adv Components & Mat Engn, 255,Jungang ro,Jeollanamdo, Sunchon 57922, South Korea
[2] Vellore Inst Technol VIT, Sch Adv Sci, Phys Div, Chennai Campus, Chennai 600127, Tamil Nadu, India
基金
新加坡国家研究基金会;
关键词
dead mass; energy storage; freestanding electrodes; metal-organic frameworks; supercapacitors; METAL-ORGANIC FRAMEWORKS; LAYERED DOUBLE-HYDROXIDE; ENHANCED ELECTROCHEMICAL PERFORMANCE; ZEOLITIC IMIDAZOLATE FRAMEWORK; CHARGE STORAGE MECHANISMS; TEMPLATE-DIRECTED GROWTH; SULFIDE NANOSHEET ARRAYS; CARBON CLOTH; NANOTUBE ARRAYS; HYBRID ARRAYS;
D O I
10.1002/smll.202207713
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Among several electrocatalysts for energy storage purposes including supercapacitors, metal-organic frameworks (MOFs), and their derivatives have spurred wide spread interest owing to their structural merits, multifariousness with tailor-made functionalities and tunable pore sizes. The electrochemical performance of supercapacitors can be further enhanced using in situ grown MOFs and their derivatives, eliminating the role of insulating binders whose "dead mass" contribution hampers the device capability otherwise. The expulsion of binders not only ensures better adhesion of catalyst material with the current collector but also facilitates the transport of electron and electrolyte ions and remedy cycle performance deterioration with better chemical stability. This review systematically summarizes different kinds of metal-ligand combinations for in situ grown MOFs and derivatives, preparation techniques, modification strategies, properties, and charge transport mechanisms as freestanding electrode materials in determining the performance of supercapacitors. In the end, the review also highlights potential promises, challenges, and state-of-the-art advancement in the rational design of electrodes to overcome the bottlenecks and to improve the capability of MOFs in energy storage applications.
引用
收藏
页数:28
相关论文
共 154 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   Three-dimensional core-shell niobium-metal organic framework@carbon nanofiber mat as a binder-free positive electrode for asymmetric supercapacitor [J].
Ahmad, Md Wasi ;
Choudhury, Arup ;
Dey, Baban ;
Anand, Surbhi ;
Al Saidi, Abdullah Khamis Ali ;
Lee, Gang Ho ;
Yang, Duck-Joo .
JOURNAL OF ENERGY STORAGE, 2022, 55
[3]   Ligand design for functional metal-organic frameworks [J].
Almeida Paz, Filipe A. ;
Klinowski, Jacek ;
Vilela, Sergio M. F. ;
Tome, Joao P. C. ;
Cavaleiro, Jose A. S. ;
Rocha, Joao .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (03) :1088-1110
[4]   Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications [J].
Arul, P. ;
John, S. Abraham .
ELECTROCHIMICA ACTA, 2019, 306 :254-263
[5]   Metal-organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors [J].
Bahaa, Ahmed ;
Balamurugan, Jayaraman ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (14) :8620-8632
[6]   Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013) [J].
Batten, Stuart R. ;
Champness, Neil R. ;
Chen, Xiao-Ming ;
Garcia-Martinez, Javier ;
Kitagawa, Susumu ;
Ohrstrom, Lars ;
O'Keeffe, Michael ;
Suh, Myunghyun Paik ;
Reedijk, Jan .
PURE AND APPLIED CHEMISTRY, 2013, 85 (08) :1715-1724
[7]   Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices [J].
Baumann, Avery E. ;
Burns, David A. ;
Liu, Bingqian ;
Thoi, V. Sara .
COMMUNICATIONS CHEMISTRY, 2019, 2 (1)
[8]   Synthetic Strategies and Structural Arrangements of Isoreticular Mixed-Component Metal-Organic Frameworks [J].
Bitzer, Johannes ;
Kleist, Wolfgang .
CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (08) :1866-1882
[9]   Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks [J].
Butler, Keith T. ;
Worrall, Stephen D. ;
Molloy, Christopher D. ;
Hendon, Christopher H. ;
Attfield, Martin P. ;
Dryfe, Robert A. W. ;
Walsh, Aron .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (31) :7726-7731
[10]   Redox-active metal-organic frameworks for energy conversion and storage [J].
Calbo, Joaquin ;
Golomb, Matthias J. ;
Walsh, Aron .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) :16571-16597