Dual-Functional Lithiophilic/Sulfiphilic Binary-Metal Selenide Quantum Dots Toward High-Performance Li-S Full Batteries

被引:82
作者
Huang, Youzhang [1 ]
Lin, Liang [1 ]
Zhang, Yinggan [1 ]
Liu, Lie [1 ]
Sa, Baisheng [3 ]
Lin, Jie [1 ]
Wang, Laisen [1 ]
Peng, Dong-Liang [1 ]
Xie, Qingshui [1 ,2 ]
机构
[1] Xiamen Univ, Coll Mat, Fujian Key Lab Surface & Interface Engn High Perfo, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[3] Fuzhou Univ, Coll Mat Sci & Engn, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
关键词
Dual-functional host; Fe2CoSe4 quantum dots; Shuttle effect; Dendrite-free Li anode; Li-S full batteries; LITHIUM; NUCLEATION; PARTICLES;
D O I
10.1007/s40820-023-01037-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides (LiPSs) shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode. Herein, a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton (3DIO FCSe-QDs@NC) is elaborately designed for both sulfur cathode and Li metal anode. The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble LiPSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors. Simultaneously, the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites. Taking advantage of these merits, the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability (a low decay rate of 0.014% over 2,000 cycles at 2C). Remarkably, a promising areal capacity of 8.41 mAh cm(-2) can be achieved at the sulfur loading up to 8.50 mg cm(-2) with an ultra-low electrolyte/sulfur ratio of 4.1 mu L mg(-1). This work paves the bi-serve host design from systematic experimental and theoretical analysis, which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.
引用
收藏
页数:18
相关论文
共 57 条
[1]   DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review [J].
Adekoya, David ;
Qian, Shangshu ;
Gu, Xingxing ;
Wen, William ;
Li, Dongsheng ;
Ma, Jianmin ;
Zhang, Shanqing .
NANO-MICRO LETTERS, 2021, 13 (01)
[2]   Natural Cocoons Enabling Flexible and Stable Fabric Lithium-Sulfur Full Batteries [J].
An, Yanan ;
Luo, Chao ;
Yao, Dahua ;
Wen, Shujing ;
Zheng, Peitao ;
Chi, Shangsen ;
Yang, Yu ;
Chang, Jian ;
Deng, Yonghong ;
Wang, Chaoyang .
NANO-MICRO LETTERS, 2021, 13 (01)
[3]  
Bewic A., 1962, T FARADAY SOC, V2200
[4]   Interfaces-dominated Li2S nucleation behavior enabled by heterostructure catalyst for fast kinetics Li-S batteries [J].
Cai, Da-Qian ;
Yang, Jin-Lin ;
Liu, Ting ;
Zhao, Shi-Xi ;
Cao, Guozhong .
NANO ENERGY, 2021, 89
[5]   Bifunctional Catalytic Effect of CoSe2 for Lithium-Sulfur Batteries: Single Doping versus Dual Doping [J].
Chen, Liping ;
Xu, Yunhua ;
Cao, Guiqiang ;
Sari, Hirbod Maleki Kheimeh ;
Duan, Ruixian ;
Wang, Jingjing ;
Xie, Chong ;
Li, Wenbin ;
Li, Xifei .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (08)
[6]   Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes [J].
Chen, Wei-Jing ;
Li, Bo-Quan ;
Zhao, Chang-Xin ;
Zhao, Meng ;
Yuan, Tong-Qi ;
Sun, Run-Cang ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :10732-10745
[7]   Is graphite lithiophobic or lithiophilic? [J].
Duan, Jian ;
Zheng, Yuheng ;
Luo, Wei ;
Wu, Wangyan ;
Wang, Tengrui ;
Xie, Yong ;
Li, Sa ;
Li, Ju ;
Huang, Yunhui .
NATIONAL SCIENCE REVIEW, 2020, 7 (07) :1208-1217
[8]   Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries [J].
Fan, Frank Y. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2015, 27 (35) :5203-5209
[9]   The Regulating Role of Carbon Nanotubes and Graphene in Lithium-Ion and Lithium-Sulfur Batteries [J].
Fang, Ruopian ;
Chen, Ke ;
Yin, Lichang ;
Sun, Zhenhua ;
Li, Feng ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2019, 31 (09)
[10]   Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage [J].
Gao, Xu ;
Wang, Boya ;
Zhang, Yun ;
Liu, Heng ;
Liu, Huakun ;
Wu, Hao ;
Dou, Shixue .
ENERGY STORAGE MATERIALS, 2019, 16 :46-55