Long Time Asymptotic Behavior for the Nonlocal mKdV Equation in Solitonic Space-Time Regions

被引:2
作者
Zhou, Xuan [1 ]
Fan, Engui [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal mKdV equation; Riemann-Hilbert problem; & part; (& macr; )-steepest descent method; Long time asymptotics; FOKAS-LENELLS EQUATION; DE-VRIES EQUATION; INVERSE SCATTERING;
D O I
10.1007/s11040-023-09445-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long time asymptotic behavior for the Cauchy problem of an integrable real nonlocal mKdV equation with nonzero initial data in the solitonic regions q(t )(x , t) - 6 sigma q(x , t)q(-x, -t)q(x)(x , t) + q(xxx)(x , t) = 0, q(x , 0) = q(0)(x), (x ->+/-infinity)lim q(0 )(x) = q +/-,where |q +/-| = 1 and q(+) = delta q- , sigma delta = -1. In our previous article, we have obtained long time asymptotics for the nonlocal mKdV equation in the solitonic region -6 < xi < 6 with xi = (t)/(x) . In this paper, we give the asymptotic expansion of the solution q(x , t) for other solitonic regions xi < -6 and xi > 6. Based on the Riemann-Hilbert formulation of the Cauchy problem, further using the & part;(& macr;) steepest descent method, we derive different long time asymptotic expansions of the solution q(x , t) in above two different space-time solitonic regions. In the region xi < -6, phase function theta(z) has four stationary phase points on the R. Correspondingly, q(x , t) can be characterized with an N(lambda)-soliton on discrete spectrum, the leading order term on continuous spectrum and an residual error term, which are affected by a function Im nu (zeta(i) ). In the region xi > 6, phase function theta(z) has four stationary phase points on iR , the corresponding asymptotic approximations can be characterized with an N(lambda)-soliton with diverse residual error order O(t(-1)).
引用
收藏
页数:53
相关论文
共 33 条
[1]  
Ablowitz M., 1991, Solitons, Nonlinear Evolution Equations and Inverse Scattering
[2]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[3]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[4]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]  
Borghese M., 2018, ANN H POINCAR ANAL, V35, P997
[7]   Soliton resolution for the focusing modified KdV equation [J].
Chen, Gong ;
Liu, Jiaqi .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (06) :2005-2071
[8]   Long-time asymptotics for the pure radiation solution of the Sine-Gordon equation [J].
Cheng, PJ ;
Venakides, S ;
Zhou, X .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1195-1262
[9]   Long-time asymptotics for the focusing Fokas-Lenells equation in the solitonic region of space-time [J].
Cheng, Qiaoyuan ;
Fan, Engui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 :883-948
[10]  
Cuccagna S, 2016, COMMUN MATH PHYS, V343, P921, DOI 10.1007/s00220-016-2617-8