The linear symmetries of Hill's lunar problem

被引:4
|
作者
Aydin, Cengiz [1 ]
机构
[1] Univ Neuchatel, Inst Math, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
关键词
Symmetry; Three body problem; Hill lunar problem; RESTRICTED PROBLEM; PERIODIC-ORBITS;
D O I
10.1007/s00013-022-01822-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A symmetry of a Hamiltonian system is a symplectic or anti-symplectic involution which leaves the Hamiltonian invariant. For the planar and spatial Hill lunar problem, four resp. eight linear symmetries are well-known. Algebraically, the planar ones form a Klein four-group Z(2) x Z(2) and the spatial ones form the group Z(2) x Z(2) x Z(2). We prove that there are no other linear symmetries. Remarkably, in Hill's system the spatial linear symmetries determine already the planar linear symmetries.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条
  • [1] The linear symmetries of Hill’s lunar problem
    Cengiz Aydin
    Archiv der Mathematik, 2023, 120 : 321 - 330
  • [2] Non—integrability of Hill's lunar problem
    Efi Meletlidou
    Simos Ichtiaroglou
    Fabian Josef Winterberg
    Celestial Mechanics and Dynamical Astronomy, 2001, 80 (2) : 145 - 156
  • [3] Fiberwise convexity of Hill's lunar problem
    Lee, Junyoung
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2017, 9 (04) : 571 - 630
  • [4] Non-integrability of Hill's lunar problem
    Meletlidou, E
    Ichtiaroglou, S
    Winterberg, FJ
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 80 (02): : 145 - 156
  • [5] Doubly-symmetric periodic solutions of Hill's lunar problem
    Howison, RC
    Meyer, KR
    HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS (HAMSYS-98), PROCEEDINGS, 2000, 6 : 186 - 196
  • [6] Global existence and singularity of Hill's lunar problem with strong potential
    Deng, Yanxia
    Ibrahim, Slim
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)
  • [7] Numerical investigation on the Hill's type lunar problem with homogeneous potential
    Deng, Yanxia
    Ibrahim, Slim
    Zotos, Euaggelos E.
    MECCANICA, 2021, 56 (09) : 2183 - 2195
  • [8] Numerical investigation on the Hill’s type lunar problem with homogeneous potential
    Yanxia Deng
    Slim Ibrahim
    Euaggelos E. Zotos
    Meccanica, 2021, 56 : 2183 - 2195
  • [9] Hill's lunar equations
    不详
    PERIODIC SOLUTIONS OF THE N-BODY PROBLEM, 1999, 1719 : 119 - 127
  • [10] Exotic Hill problem: Hall motions and symmetries
    Zhang, P. M.
    Horvathy, P. A.
    PHYSICAL REVIEW D, 2012, 85 (10)