Medical image fusion based on sparse representation and neighbor energy activity

被引:17
|
作者
Li, Xiaosong [1 ]
Wan, Weijun [2 ]
Zhou, Fuqiang [3 ]
Cheng, Xiaoqi [1 ]
Jie, Yuchan [1 ]
Tan, Haishu [1 ,4 ]
机构
[1] Foshan Univ, Sch Phys & Optoelect Engn, Guangdong Hong Kong Macao Joint Lab Intelligent Mi, Hong Kong 528225, Guangdong, Peoples R China
[2] Guangxi Med Univ, Affiliated Hosp 1, Nanning 530021, Guangxi, Peoples R China
[3] Beihang Univ, Key Lab Precis Optomechatron Technol, Minist Educ, Beijing 100191, Peoples R China
[4] Ji Hua Lab, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multimodal medical image fusion; Sparse representation; Neighbor energy activity; Medical aid; WAVELET TRANSFORM; DICTIONARIES; ENHANCEMENT; PERFORMANCE; INFORMATION; ALGORITHM;
D O I
10.1016/j.bspc.2022.104353
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Medical image fusion has become popular in recent years. The fused image can provide a more objective and comprehensive description of lesions and has significant clinical medical aid potential. In this paper, we propose a novel medical image fusion method based on sparse representation and neighbor energy activity that improves the quality of fused images and preserves key information in the source images, such as details, brightness, and color. The proposed method divides the source image into base and detail layers and adopts sparse representation to fuse the base layers. Further, a neighbor energy activity operator that effectively captures the changing fea-tures in the detail layers is utilized. The fused result is obtained by combining the selective layers. The proposed method is applicable to both grayscale and color image fusion problems. In experiments, ten sets of medical images were used as test images. The images included seven different diseases and one normal cranial image and covered five different fusion types: CT/T2, Gad/T2, PET/T1, PET/T2, and SPECT/T2. Further, it was compared with 11 state-of-the-art fusion algorithms, with six highly recognized metrics used for quantitative evaluation. The experimental results indicated that the proposed method outperformed several of the state-of-the-art methods in visual and objective evaluations. Additionally, in experiments conducted to medically analyze the fused images with eight different lesion conditions in the fused images, the fusion results were found to be practicable for medical assistance in actual clinics.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Multi-Modal Medical Image Fusion With Geometric Algebra Based Sparse Representation
    Li, Yanping
    Fang, Nian
    Wang, Haiquan
    Wang, Rui
    FRONTIERS IN GENETICS, 2022, 13
  • [32] Infrared and Visible Image Fusion based on Sparse Representation and Weighted Least Square Optimization
    Budhiraja, Sumit
    Agrawal, Sunil
    Sharma, Neeraj
    IETE JOURNAL OF RESEARCH, 2025,
  • [33] A multi-focus image fusion framework based on multi-scale sparse representation in gradient domain
    Wang, Yu
    Li, Xiongfei
    Zhu, Rui
    Wang, Zeyu
    Feng, Yuncong
    Zhang, Xiaoli
    SIGNAL PROCESSING, 2021, 189
  • [34] Sparse Representation and PCA Method for Image Fusion in Remote Sensing
    Zhang, Xiaofeng
    Ni, Ding
    Gou, Zhijun
    Ma, Hongbing
    PROCEEDINGS OF 2016 THE 2ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS, 2016, : 324 - 330
  • [35] Efficient image fusion with approximate sparse representation
    Yang Bin
    Yang Chao
    Huang Guoyu
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (04)
  • [36] Image Fusion by Hierarchical Joint Sparse Representation
    Yao, Yao
    Guo, Ping
    Xin, Xin
    Jiang, Ziheng
    COGNITIVE COMPUTATION, 2014, 6 (03) : 281 - 292
  • [37] Multifocus Image Fusion and Restoration With Sparse Representation
    Yang, Bin
    Li, Shutao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (04) : 884 - 892
  • [38] Multimodal medical image fusion based on nonsubsampled shearlet transform and convolutional sparse representation
    Wang, Lifang
    Dou, Jieliang
    Qin, Pinle
    Lin, Suzhen
    Gao, Yuan
    Wang, Ruifang
    Zhang, Jin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (30) : 36401 - 36421
  • [39] Multimodal medical image fusion based on nonsubsampled shearlet transform and convolutional sparse representation
    Lifang Wang
    Jieliang Dou
    Pinle Qin
    Suzhen Lin
    Yuan Gao
    Ruifang Wang
    Jin Zhang
    Multimedia Tools and Applications, 2021, 80 : 36401 - 36421
  • [40] Remote sensing image fusion based on sparse representation
    Yin, W. (yinwen@sjtu.edu.cn), 2013, Chinese Optical Society (33):