Higher Rank Brill-Noether Theory on DOUBLE-STRUCK CAPITAL P2

被引:2
作者
Gould, Ben [1 ]
Liu, Yeqin [1 ]
Lee, Woohyung [1 ]
机构
[1] Univ Illinois, Sci & Engn Off, Dept Math Stat & Comp Sci, 851 South Morgan St, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
MODULI SPACES; SHEAVES; CONE; BUNDLES;
D O I
10.1093/imrn/rnac333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-P2(v) be a moduli space of semistable sheaves on P-2, and let B-k(v) subset of M-P2(v) be the Brill-Noether locus of sheaves E with h(0)(P-2,P- E) >= k. In this paper, we develop the foundational properties of Brill-Noether loci on P-2. Set r = r(E) to be the rank and c(1), c(2) the Chern classes. The Brill-Noether loci have natural determinantal scheme structures and expected dimensions dim B-k(v) = dim MP2(v) - k(k - X(E)). When c(1) > 0, we show that the Brill-Noether locus B-r(v) is nonempty. When c(1) = 1, we show all of the Brill-Noether loci are irreducible and of the expected dimension. We show that when mu = c(1)/r > 1/2 is not an integer and c(2) >> 0, the Brill-Noether loci are reducible and describe distinct irreducible components of both expected and unexpected dimension.
引用
收藏
页码:22096 / 22137
页数:42
相关论文
共 18 条
[1]   GOOD MODULI SPACES FOR ARTIN STACKS [J].
Alper, Jarod .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (06) :2349-2402
[2]  
[Anonymous], 1985, Geometry of Algebraic Curves
[3]  
Coskun I., 2021, ARXIV
[4]   Existence of semistable sheaves on Hirzebruch surfaces [J].
Coskun, Izzet ;
Huizenga, Jack .
ADVANCES IN MATHEMATICS, 2021, 381
[5]   BRILL-NOETHER THEOREMS AND GLOBALLY GENERATED VECTOR BUNDLES ON HIRZEBRUCH SURFACES [J].
Coskun, Izzet ;
Huizenga, Jack .
NAGOYA MATHEMATICAL JOURNAL, 2020, 238 :1-36
[6]   The nef cone of the moduli space of sheaves and strong Bogomolov inequalities [J].
Coskun, Izzet ;
Huizenga, Jack .
ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (01) :205-236
[7]   The effective cone of the moduli space of sheaves on the plane [J].
Coskun, Izzet ;
Huizenga, Jack ;
Woolf, Matthew .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (05) :1421-1467
[8]   The ample cone of moduli spaces of sheaves on the plane [J].
Coskun, Izzet ;
Huizenga, Jack .
ALGEBRAIC GEOMETRY, 2016, 3 (01) :106-136
[9]   Brill-Noether theory for moduli spaces of sheaves on algebraic varieties [J].
Costa, Laura ;
Miro-Roig, Rosa Maria .
FORUM MATHEMATICUM, 2010, 22 (03) :411-432
[10]  
Drézet JM, 2008, TRENDS MATH, P33, DOI 10.1007/978-3-7643-8537-8_3