A novel method for SoC estimation of lithium-ion batteries based on previous covariance matrices and variable ECM parameters

被引:3
|
作者
Korkmaz, Mehmet [1 ]
机构
[1] Aksaray Univ, Dept Elect & Elect Engn, Aksaray, Turkey
关键词
Kalman filter; Battery modeling; Equivalent circuit model; Lithium-ion battery; State of charge (SoC); STATE-OF-CHARGE; EQUIVALENT-CIRCUIT MODELS; EXTENDED KALMAN FILTER; VOLTAGE;
D O I
10.1007/s00202-022-01692-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lithium-Ion battery powered electric vehicles (EVs) offer many benefits, such as having high energy efficiency, requiring lower maintenance, and being cheaper to run. Besides, they play a crucial role in decarbonization. These advantages will probably make it an indispensable option for both drivers and governments in the future decades. However, the bottleneck of them is the batteries. In particular, accurate estimation of state of charge (SoC) of batteries, which refers to the remaining driving range, is one of the most notable challenges for EVs. With this in mind, in this paper, a novel Kalman filter-based estimation method is proposed to increase the accuracy of the SoC. The proposed method considers not only the current but also the previous covariance matrices since abrupt changes in the nonlinear dynamics of the battery may lead to incorrect estimation. Consequently, smoother state transitions are provided, and more accurate SoC estimation is possible. The improved method is supported by the 2-RC Thevenin equivalent circuit model, whose parameters are described as a function of the SoC and temperature. The battery model and proposed method are tested with three different driving cycles to prove the efficiency. According to the results, the proposed method can minimize the RMSE of SoC estimation up to at least 10% and provides better SoC estimations for compact EVs.
引用
收藏
页码:705 / 718
页数:14
相关论文
共 50 条
  • [21] SOC Estimation Method for Lithium-ion Batteries: Extended Kalman Filter with Weighted Innovation
    Han, Yiyang
    Ding, Jie
    Chen, Jiazhong
    Sun, Peng
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 5074 - 5078
  • [22] The Adaptive Fading Extended Kalman Filter SOC Estimation Method for Lithium-ion Batteries
    Zhao, Yunfei
    Xu, Jun
    Wang, Xiao
    Mei, Xuesong
    RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID, 2018, 145 : 357 - 362
  • [23] An AUKF-Based SOC Estimation Method for Lithium-ion Battery
    Wang P.
    Gong Q.
    Cheng Z.
    Zhang J.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (07): : 1080 - 1087
  • [24] An Accurate SOC Estimation Method for Lithium-ion Batteries which Considers Thermal Variation
    Ishizaki, Ryu
    Lin, Lei
    Fukui, Masahiro
    ELECTROCHEMISTRY, 2015, 83 (10) : 852 - 854
  • [25] A novel state of charge estimation method for lithium-ion batteries based on bias compensation
    Ouyang, Tiancheng
    Xu, Peihang
    Chen, Jingxian
    Su, Zixiang
    Huang, Guicong
    Chen, Nan
    ENERGY, 2021, 226
  • [26] SoC estimation of lithium-ion batteries based on machine learning techniques: A filtered approach
    Korkmaz, Mehmet
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [27] SOC estimation of lithium-ion batteries for electric vehicles based on multimode ensemble SVR
    Tian, Huixin
    Li, Ang
    Li, Xiaoyu
    JOURNAL OF POWER ELECTRONICS, 2021, 21 (09) : 1365 - 1373
  • [28] Parameter identification and SOC estimation of lithium-ion batteries based on AGCOA-ASRCKF
    Chu, Yunkun
    Li, Junhong
    Gu, Juping
    Qiang, Yujian
    JOURNAL OF POWER ELECTRONICS, 2023, 23 (02) : 308 - 319
  • [29] SOC estimation of lithium-ion batteries for electric vehicles based on multimode ensemble SVR
    Huixin Tian
    Ang Li
    Xiaoyu Li
    Journal of Power Electronics, 2021, 21 : 1365 - 1373
  • [30] Parameter identification and SOC estimation of lithium-ion batteries based on AGCOA-ASRCKF
    Yunkun Chu
    Junhong Li
    Juping Gu
    Yujian Qiang
    Journal of Power Electronics, 2023, 23 : 308 - 319