Thom condition and monodromy

被引:1
|
作者
Gimenez Conejero, R. [1 ]
Le, Dung Trang [2 ]
Nuno-Ballesteros, J. J. [3 ,4 ]
机构
[1] Alfred Reny Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
[2] Univ Aix Marseille, Marseille, France
[3] Univ Valencia, Dept Matemat, Campus Burjassot, E-46100 Burjassot, Spain
[4] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Monodromy; Milnor fibration; Relative polar curves;
D O I
10.1007/s13398-022-01353-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give the definition of the Thom condition and we show that given any germ of complex analytic function f : (X, x) -> (C, 0) on a complex analytic space X, there exists a geometric local monodromy without fixed points, provided that f is an element of m(X,x)(2), where m(X, x) is the maximal ideal of O-X,O- x. This result generalizes a well-known theorem of the second named author when X is smooth and proves a statement by Tibar in his PhD thesis. It also implies the A'Campo theorem that the Lefschetz number of the monodromy is equal to zero. Moreover, we give an application to the case that X has maximal rectified homotopical depth at x and show that a family of such functions with isolated critical points and constant total Milnor number has no coalescing of singularities.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Thom condition and monodromy
    R. Giménez Conejero
    Dũng Tráng Lê
    J. J. Nuño-Ballesteros
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [2] Formulas for monodromy
    Alan Stapledon
    Research in the Mathematical Sciences, 4
  • [3] Monodromy Coordinates
    Brysiewicz, Taylor
    MATHEMATICAL SOFTWARE-ICMS 2024, 2024, 14749 : 265 - 274
  • [4] Formulas for monodromy
    Stapledon, Alan
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4
  • [5] MILNOR FIBRATIONS OF ARRANGEMENTS WITH TRIVIAL ALGEBRAIC MONODROMY
    Suciu, Alexandru I.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 69 (02): : 235 - 293
  • [6] On the local monodromy of A-hypergeometric functions and some monodromy invariant subspaces
    Fernandez-Fernandez, Maria-Cruz
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (03) : 949 - 961
  • [7] Monodromy and log geometry
    Achinger, Piotr
    Ogus, Arthur
    TUNISIAN JOURNAL OF MATHEMATICS, 2020, 2 (03) : 455 - 534
  • [8] Monodromy in Dicke superradiance
    Kloc, Michal
    Stransky, Pavel
    Cejnar, Pavel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (31)
  • [9] Monodromy of Hypersurface Singularities
    Mathias Schulze
    Acta Applicandae Mathematica, 2003, 75 : 3 - 13
  • [10] Geodesics on the ellipsoid and monodromy
    Davison, Chris M.
    Dullin, Holger R.
    Bolsinov, Alexey V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (12) : 2437 - 2454