On the Topology of Real Lagrangians in Toric Symplectic Manifolds

被引:0
|
作者
Brendel, Joe [1 ]
Kim, Joontae [2 ]
Moon, Jiyeon [3 ]
机构
[1] Univ Neuchatel, Inst Math, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
[2] Sogang Univ, Dept Math, 35 Baekbeom Ro, Seoul 04107, South Korea
[3] Seoul Natl Univ, Res Inst Math, 1 GwanAkRo, Seoul 08826, South Korea
基金
瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
CONVEXITY; SPHERES; POLYTOPES;
D O I
10.1007/s11856-022-2358-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the topology of real Lagrangian submanifolds in a toric symplectic manifold which come from involutive symmetries on its moment polytope. We establish a real analog of the Delzant construction for those real Lagrangians, which says that their diffeomorphism type is determined by combinatorial data. As an application, we realize all possible diffeomorphism types of connected real Lagrangians in toric symplectic del Pezzo surfaces.
引用
收藏
页码:113 / 156
页数:44
相关论文
共 43 条
  • [21] Uniqueness of Real Lagrangians up to Cobordism
    Kim, Joontae
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (08) : 6184 - 6199
  • [22] Circle actions on symplectic four-manifolds
    Holm, Tara S.
    Kessler, Liat
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (02) : 421 - 464
  • [23] Minimal models of compact symplectic semitoric manifolds
    Kane, D. M.
    Palmer, J.
    Pelayo, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 125 : 49 - 74
  • [24] RELATIVE ALGEBRO-GEOMETRIC STABILITIES OF TORIC MANIFOLDS
    Yotsutani, Naoto
    Zhou, Bin
    TOHOKU MATHEMATICAL JOURNAL, 2019, 71 (04) : 495 - 524
  • [25] Generalized toric varieties, LVMB manifolds and Lie groupoids
    Costa, Matheus Silva
    Grama, Lino
    Katzarkov, Ludmil
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (04)
  • [26] Equivariant almost complex structures on quasi-toric manifolds
    Kustarev, A. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (01) : 156 - 158
  • [27] On the density function on moduli spaces of toric 4-manifolds
    Figalli, Alessio
    Pelayo, Alvaro
    ADVANCES IN GEOMETRY, 2016, 16 (03) : 291 - 300
  • [28] Symplectormophism groups of non-compact manifolds, orbifold balls, and a space of Lagrangians
    Hind, Richard
    Pinsonnault, Martin
    Wu, Weiwei
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (01) : 203 - 226
  • [29] Every Symplectic Toric Orbifold is a Centered Reduction of a Cartesian Product of Weighted Projective Spaces
    Marinkovic, Aleksandra
    Pabiniak, Milena
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (23) : 12432 - 12458
  • [30] Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties
    Soprunova, Evgenia
    Sottile, Frank
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (02) : 509 - 519