On the Topology of Real Lagrangians in Toric Symplectic Manifolds

被引:0
|
作者
Brendel, Joe [1 ]
Kim, Joontae [2 ]
Moon, Jiyeon [3 ]
机构
[1] Univ Neuchatel, Inst Math, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
[2] Sogang Univ, Dept Math, 35 Baekbeom Ro, Seoul 04107, South Korea
[3] Seoul Natl Univ, Res Inst Math, 1 GwanAkRo, Seoul 08826, South Korea
基金
瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
CONVEXITY; SPHERES; POLYTOPES;
D O I
10.1007/s11856-022-2358-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the topology of real Lagrangian submanifolds in a toric symplectic manifold which come from involutive symmetries on its moment polytope. We establish a real analog of the Delzant construction for those real Lagrangians, which says that their diffeomorphism type is determined by combinatorial data. As an application, we realize all possible diffeomorphism types of connected real Lagrangians in toric symplectic del Pezzo surfaces.
引用
收藏
页码:113 / 156
页数:44
相关论文
共 43 条
  • [1] Non-Compact Symplectic Toric Manifolds
    Karshon, Yael
    Lerman, Eugene
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [2] TORIC TOPOLOGY OF THE COMPLEX GRASSMANN MANIFOLDS
    Buchstaber, Victor M.
    Terzic, Svjetlana
    MOSCOW MATHEMATICAL JOURNAL, 2019, 19 (03) : 397 - 463
  • [3] The tropical momentum map: a classification of toric log symplectic manifolds
    Gualtieri, Marco
    Li, Songhao
    Pelayo, Alvaro
    Ratiu, Tudor S.
    MATHEMATISCHE ANNALEN, 2017, 367 (3-4) : 1217 - 1258
  • [4] Canonical bases for the equivariant cohomology and K-theory rings of symplectic toric manifolds
    Pabiniak, M.
    Sabatini, S.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (04) : 1117 - 1165
  • [5] On complex and symplectic toric stacks
    Hochenegger, Andreas
    Witt, Frederik
    CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, : 305 - +
  • [6] Nonrational symplectic toric cuts
    Battaglia, Fiammetta
    Prato, Elisa
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (10)
  • [7] TOPOLOGICAL TORIC MANIFOLDS
    Ishida, Hiroaki
    Fukukawa, Yukiko
    Masuda, Mikiya
    MOSCOW MATHEMATICAL JOURNAL, 2013, 13 (01) : 57 - 98
  • [8] SPHERICAL CONTACT TORIC MANIFOLDS
    Li, Hui
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 349 - 353
  • [9] Moduli spaces of toric manifolds
    Pelayo, A.
    Pires, A. R.
    Ratiu, T. S.
    Sabatini, S.
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 323 - 341
  • [10] Topology of symplectic torus actions with symplectic orbits
    Duistermaat, J. J.
    Pelayo, A.
    REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (01): : 59 - 81