FINITE GROUPS WITH ABNORMAL MINIMAL NONNILPOTENT SUBGROUPS

被引:2
作者
Wang, Zhigang [1 ]
Cai, Jinzhuan [1 ]
Safonova, Inna N. [2 ]
Skiba, Alexander N. [3 ]
机构
[1] Hainan Univ, Sch Sci, Haikou 570228, Hainan, Peoples R China
[2] Belarusian State Univ, Dept Appl Math & Comp Sci, Minsk 220030, BELARUS
[3] Francisk Skorina Gomel State Univ, Dept Math & Technol Programming, Gomel 246019, BELARUS
基金
中国国家自然科学基金;
关键词
finite group; soluble group; Schmidt group; abnormal subgroup; quasisimple group;
D O I
10.1017/S0004972722000843
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe finite soluble nonnilpotent groups in which every minimal nonnilpotent subgroup is abnormal. We also show that if G is a nonsoluble finite group in which every minimal nonnilpotent subgroup is abnormal, then G is quasisimple and Z(G) is cyclic of order vertical bar Z(G)vertical bar is an element of {1, 2, 3, 4}.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 50 条
[41]   On finite groups with many supersoluble subgroups [J].
A. Ballester-Bolinches ;
R. Esteban-Romero ;
Jiakuan Lu .
Archiv der Mathematik, 2017, 109 :3-8
[42]   On normalizers of Sylow subgroups in finite groups [J].
Ballester-Bolinches, A ;
Shemetkov, LA .
SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (01) :1-2
[43]   Finite groups with systems of Σ-embedded subgroups [J].
SKIBA Alexander N .
Science China(Mathematics), 2011, 54 (09) :1909-1926
[44]   On hall subnormally embedded subgroups of finite groups [J].
Adolfo Ballester-Bolinches ;
John Cossey ;
ShouHong Qiao .
Monatshefte für Mathematik, 2016, 181 :753-760
[45]   Finite Groups with Generalized Subnormal Schmidt Subgroups [J].
F. Sun ;
X. Yi ;
S. F. Kamornikov .
Siberian Mathematical Journal, 2021, 62 :364-369
[46]   Finite groups with formation subnormal primary subgroups [J].
Monakhov, V. S. ;
Sokhor, I. L. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (04) :663-671
[47]   On (sic)(n)-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS [J].
Yang, Nanying ;
Guo, Wenbin .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (04) :619-629
[48]   Finite groups with formation subnormal primary subgroups [J].
V. S. Monakhov ;
I. L. Sokhor .
Siberian Mathematical Journal, 2017, 58 :663-671
[49]   Finite groups with systems of I£-embedded subgroups [J].
Guo WenBin ;
Skiba, Alexander N. .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (09) :1909-1926
[50]   ON A PERMUTABILITY PROPERTY OF SUBGROUPS OF FINITE SOLUBLE GROUPS [J].
Ballester-Bolinches, A. ;
Cossey, John ;
Soler-Escriva, X. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (02) :207-221