Evaluating convolutional neural network-enhanced electrocardiography for hypertrophic cardiomyopathy detection in a specialized cardiovascular setting

被引:5
作者
Hirota, Naomi [1 ]
Suzuki, Shinya [1 ]
Motogi, Jun [2 ]
Umemoto, Takuya [2 ]
Nakai, Hiroshi [3 ]
Matsuzawa, Wataru [2 ]
Takayanagi, Tsuneo [2 ]
Hyodo, Akira [2 ]
Satoh, Keiichi [2 ]
Arita, Takuto [1 ]
Yagi, Naoharu [1 ]
Kishi, Mikio [1 ]
Semba, Hiroaki [1 ]
Kano, Hiroto [1 ]
Matsuno, Shunsuke [1 ]
Kato, Yuko [1 ]
Otsuka, Takayuki [1 ]
Uejima, Tokuhisa [1 ]
Oikawa, Yuji [1 ]
Hori, Takayuki [4 ]
Matsuhama, Minoru [4 ]
Iida, Mitsuru [4 ]
Yajima, Junji [1 ]
Yamashita, Takeshi [1 ]
机构
[1] Cardiovasc Inst, Dept Cardiovasc Med, 3-2-19 Nishiazabu,Minato Ku, Tokyo 1060031, Japan
[2] Nihon Kohden Corp, Tokyo, Japan
[3] Cardiovasc Inst, Informat Syst Div, Tokyo, Japan
[4] Cardiovasc Inst, Dept Cardiovasc Surg, Tokyo, Japan
关键词
Hypertrophic cardiomyopathy; Artificial intelligence; Electrocardiography; Convolutional neural network; SUDDEN-DEATH; DISEASE;
D O I
10.1007/s00380-024-02367-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The efficacy of convolutional neural network (CNN)-enhanced electrocardiography (ECG) in detecting hypertrophic cardiomyopathy (HCM) and dilated HCM (dHCM) remains uncertain in real-world applications. This retrospective study analyzed data from 19,170 patients (including 140 HCM or dHCM) in the Shinken Database (2010-2017). We evaluated the sensitivity, positive predictive rate (PPR), and F1 score of CNN-enhanced ECG in a ''basic diagnosis'' model (total disease label) and a ''comprehensive diagnosis'' model (including disease subtypes). Using all-lead ECG in the "basic diagnosis" model, we observed a sensitivity of 76%, PPR of 2.9%, and F1 score of 0.056. These metrics improved in cases with a diagnostic probability of >= 0.9 and left ventricular hypertrophy (LVH) on ECG: 100% sensitivity, 8.6% PPR, and 0.158 F1 score. The ''comprehensive diagnosis'' model further enhanced these figures to 100%, 13.0%, and 0.230, respectively. Performance was broadly consistent across CNN models using different lead configurations, particularly when including leads viewing the lateral walls. While the precision of CNN models in detecting HCM or dHCM in real-world settings is initially low, it improves by targeting specific patient groups and integrating disease subtype models. The use of ECGs with fewer leads, especially those involving the lateral walls, appears comparably effective.
引用
收藏
页码:524 / 538
页数:15
相关论文
共 31 条
[2]   Application of artificial intelligence to the electrocardiogram [J].
Attia, Zachi, I ;
Harmon, David M. ;
Behr, Elijah R. ;
Friedman, Paul A. .
EUROPEAN HEART JOURNAL, 2021, 42 (46) :4717-+
[3]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[4]   Machine learning for brain age prediction: Introduction to methods and clinical applications [J].
Baecker, Lea ;
Garcia-Dias, Rafael ;
Vieira, Sandra ;
Scarpazza, Cristina ;
Mechelli, Andrea .
EBIOMEDICINE, 2021, 72
[5]   Smartwatch Algorithm for Automated Detection of Atrial Fibrillation [J].
Bumgarner, Joseph M. ;
Lambert, Cameron T. ;
Hussein, Ayman A. ;
Cantillon, Daniel J. ;
Baranowski, Bryan ;
Wolski, Kathy ;
Lindsay, Bruce D. ;
Wazni, Oussama M. ;
Tarakji, Khaldoun G. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (21) :2381-2388
[6]   Cost-effectiveness of Screening for Atrial Fibrillation Using Wearable Devices [J].
Chen, Wanyi ;
Khurshid, Shaan ;
Singer, Daniel E. ;
Atlas, Steven J. ;
Ashburner, Jeffrey M. ;
Ellinor, Patrick T. ;
McManus, David D. ;
Lubitz, Steven A. ;
Chhatwal, Jagpreet .
JAMA HEALTH FORUM, 2022, 3 (08) :E222419
[7]   Receiver operating characteristic studies and measurement errors [J].
Coffin, M ;
Sukhatme, S .
BIOMETRICS, 1997, 53 (03) :823-837
[8]   IDIOPATHIC HYPERTROPHIC SUBAORTIC STENOSIS - CLINICAL ANALYSIS OF 126 PATIENTS WITH EMPHASIS ON NATURAL HISTORY [J].
FRANK, S ;
BRAUNWALD, E .
CIRCULATION, 1968, 37 (05) :759-+
[9]   AHA/ACCF/HRS Recommendations for the Standardization and Interpretation of the Electrocardiogram Part V: Electrocardiogram Changes Associated With Cardiac Chamber Hypertrophy A Scientific Statement From the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology [J].
Hancock, E. William ;
Deal, Barbara J. ;
Mirvis, David M. ;
Okin, Peter ;
Kligfield, Paul ;
Gettes, Leonard S. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 53 (11) :992-1002
[10]   Identification of patients with dilated phase of hypertrophic cardiomyopathy using a convolutional neural network applied to multiple, dual, and single lead electrocardiograms [J].
Hirota, Naomi ;
Suzuki, Shinya ;
Motogi, Jun ;
Umemoto, Takuya ;
Nakai, Hiroshi ;
Matsuzawa, Wataru ;
Takayanagi, Tsuneo ;
Hyodo, Akira ;
Satoh, Keiichi ;
Arita, Takuto ;
Yagi, Naoharu ;
Kishi, Mikio ;
Semba, Hiroaki ;
Kano, Hiroto ;
Matsuno, Shunsuke ;
Kato, Yuko ;
Otsuka, Takayuki ;
Uejima, Tokuhisa ;
Oikawa, Yuji ;
Hori, Takayuki ;
Matsuhama, Minoru ;
Iida, Mitsuru ;
Yajima, Junji ;
Yamashita, Takeshi .
IJC HEART & VASCULATURE, 2023, 46